

Optimal Position of a Femorojugular Cannulation for Venovenous Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome

Keimyung University Dongsan Medical Center Thoracic and Cardiovascular Surgery Department Kyungsub Song

North Line of the last

© 2023 by The Society of Thoracic Surgeons Published by Elsevier Inc.

Transplant & Mechanical Support: Research

Optimal Position of a Femorojugular Cannulation for Venovenous Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome

Kyungsub Song, MD,¹ Soo Jin Na, MD,² Chi Ryang Chung, MD, PhD,² Kyeongman Jeon, MD, PhD,^{2,3} Gee Young Suh, MD, PhD,^{2,3} Suryeun Chung, MD,⁴ Kiick Sung, MD, PhD,⁴ and Yang Hyun Cho, MD, PhD⁴

Femoro-jugular configuration of VV-ECMO

IVC group

RA group

To reduce recirculation

Jayaraman A.L et al. *Ann Card Anesth.* 2017;20:S11–S18. Douflé G et al. *Crit Care.* 2015;19:326. Banfi C et al. *J Thorac Dis.* 2016; 8:3762-3773.

FiO₂ 1.0

Recirculation fraction??

Sufficient patients' SaO₂

Sufficient VV-ECMO flow -> Awaken ECMO

IVC group

RA group

Primary outcome

-Change in body weight and fluid balance

during 72 hr

Secondary outcome

-90-day mortality after VV-ECMO insertion

-Ratio of awake ECMO after 72 hr

-Recirculation fraction

DEFINITIONS

Awake under ECMO

-ECMO without mechanical ventilation in spontaneously breathing patients

Evaluation of recirculation fraction

-Preoxygenator partial O₂ (pre-oxyPO₂)/Postoxygenator partial O₂ pressure (post-oxyPO₂)

VV-ECMO management

-The initial fraction of oxygen in the sweep gas circuit was set at FiO₂ 1.0 with a sweep gas flow rate of 2 to 5 L/min.

-ECMO flow per minute were set to achieve a 50 to 80 mL/kg/min flow.

-Target oxygen saturation and $PaCO_2$ levels were >85% and 35 to 45 mm Hg.

-Heparinization: Activated clotting time between 150 and 180 seconds or activated partial prothrombin time between 55 and 75 seconds.

RESULT

TABLE 1 Patient Clinical and Treatment Characteristics						
Variable	IVC Group (n = 35)	RA Group (n = 61)	<i>P</i> Value			
Male sex	28 (80)	45 (73.8)	.47			
Age, y	59.40 ± 11.92	58.61 ± 13.31	.77			
Hypertension	11 (31.4)	23 (37.7)	.38			
Diabetes mellitus	8 (22.9)	18 (29.5)	.50			
Diuretic use	29 (82.9)	48 (78.7)	.62			
Etiology of respiratory failure			.24			
Viral pneumonia	5 (14.3)	15 (24.6)				
Bacterial pneumonia	17 (48.6)	30 (49.2)				
COPD/Asthma	0 (0)	2 (3.3)				
Aspiration pneumonia	2 (5.7)	0 (0)				
Interstitial lung disease	9 (25.7)	9 (14.8)				
Pulmonary contusion	1(2.9)	1 (1.6)				
Other	1 (2.9)	4 (6.6)				
Laboratory variables before ECMO						
White blood cells	14.2 ± 8.1	15.5 ± 7.8	.44			
Hemoglobin	11.6 ± 4.2	10.5 ± 2.1	.07			
Platelets	148.9 ± 123.0	184.3 ± 130.2	.19			
Creatine	1.1 ± 0.7	1.1 ± 0.7	.88			
eGFR	107.3 ± 79.8	102.8 ± 61.3	.42			
Total bilirubin	1.3 ± 1.2	1.8 ± 4.1	.54			
SOFA score before ECMO	7.7 ± 1.9	6.9 ± 2.1	.08			
Arterial blood gas before ECMO						
PaO ₂ /FiO ₂	64.7 ± 14.1	79.1 ± 26.2	< .001			
PaO ₂	58.9 ± 9.4	65.6 ± 11.2	.004			
SaO ₂	88.0 ± 5.8	86.9 ± 14.7	.69			
PaO ₂	48.7 ± 14.2	50.4 ± 13.7	.56			
pH	7.4 ± 0.1	7.4 ± 0.1	.35			
Pre-ECMO rescue therapy						
FiO ₂	92.4 ± 9.8	87.2 ± 15.7	.05			
Mechanical ventilator	32 (91.4)	55 (90.2)	.84			

Values are expressed as mean ± SD, or n (%). Significant *P* values are presented in italics. COPD, chronic obstructive pulmonary disease; ECMO, extracorporeal membrane oxygenation; eGFR, estimated glomerular filtration rate; IVC, inferior vena cava; PaO₂/FiO₂, ratio of arterial oxygen partial pressure to fractional inspired oxygen; RA, right atrium; SaO₂, oxygen saturation; SOFA, sequential organ failure assessment.

TABLE 2 Clinical Outcomes of Venovenous ECMO Treatment					
Variable	IVC Group RA Group (n = 35) (n = 61)		P Value		
Initial ECMO setting					
FsO ₂	1.0 1.0				
Return cannula size, F	17.1 ± 0.9	17.0 ± 1.0	.18		
Drainage cannula size, F	23.5 ± 2.2	23.2 ± 1.9	.47		
Flow	3.8 ± 0.8	4.1 ± 0.7	.08		
Cardiac index	2.3 ± 0.4	2.4 ± 0.4	.26		
Gas flow	4.8 ± 1.8	4.2 ± 1.3	.10		
72 h after ECMO					
ECMO flow	3.7 ± 1.0	4.0 ± 0.9	.07		
Respiratory support FiO ₂	35.7 ± 10.1	33.6 ± 8.6	.29		
pre-oxyPO ₂ /post-oxyPO ₂ (72 h)	0.128 ± 0.106	0.114 ± 0.088	.48		
Peripheral ABGA (72 h)					
PaO ₂	89.2 ± 21.0	88.9 ± 20.2	.99		
SaO ₂	95.9 ± 3.2	96.2 ± 2.0	.90		
PaCO ₂	42.9 ± 12.7	39.7 ± 7.0	.17		
ECMO support days	27.6 ± 38.0	28.4 ± 24.6	.90		
In-hospital mortality	23 (65.7)	40 (67.2)	.88		
ECMO weaning	17 (48.6)	27 (44.3)	.68		
90-d mortality	22 (62.9)	40 (67.2) .83			
Ventilator-free days	10.0 ± 11.1	11.7 ± 10.7	.68		
Catheter repositioning	1 (2.9) ^a	4 (6.6) ^b	.65		

^aAdditional femoral venous drain catheter was inserted in opposite femoral vein due to poor drainage; ^bDrainage catheter was repositioned due to low SaO₂. ABGA, arterial blood gas analysis; ECMO, extracorporeal membrane oxygenation; FiO₂, fractional inspired oxygen; FsO₂, fraction of oxygen in the weep gas; IVC, inferior vena cava; _{pre-oxy}PO₂/_{post-oxy}PO₂, ratio of preoxygenator partial O₂ pressure (_{pre-oxy}PO₂) to postoxygenator partial O₂ pressure (_{post-oxy}PO₂); RA, right atrium; SaO₂, oxygen saturation.

Negative fluid balance during 72 hr

Body weight change during 72hr

TABLE 4 Predictors of Bodyweight Reduction After 72 Hours						
	Univariate		Multivariate			
Variable	P Value	OR (95% CI)	P Value	OR (95% CI)		
RA group	.007	3.316 (1.394-7.887)	.007	3.546 (0.113-0.702)		
Venous cannula size, F	.81	0.975 (0.795-1.196)				
Body surface area	.14	5.660 (0.552-58.058)	.40	2.978 (0.239-37.141)		
Female sex	.84	1.103 (0.428-2.843)				
CRRT	.27	1.667 (0.677-4.102)				
Awake ECMO	.63	1.249 (0.512-3.048)				
Index flow of ECMO	.18	0.487 (0.170-1.397)	.14	0.418 (0.132-1.328)		

Significant *P* values are presented in italics. CRRT, continuous renal replacement therapy; ECMO, extracorporeal membrane oxygenation; OR, odds ratio; RA, right atrium.

Ratio of awaken ECMO

FIGURE 3 The ratios of awake venovenous extracorporeal membrane oxygenation (ECMO) between the 2 groups at different time periods. At 24 and 72 hours after femoral vein-internal jugular vein ECMO initiation, significantly more patients in the right atrium (RA) group than in the inferior vena cava (IVC) group were managed with awake ECMO.

DISCUSSION

Key points of this study

Drain cannula in RA

- Insignificant recirculation change

- More stable VV-ECMO flow

-> less unnecessary volume replacement, more awakening ECMO

DISCUSSION – Negative fluid balance in ARDS

A net positive fluid balance occurs in most patients at the onset of ARDS

-> Leading to prolonged mechanical ventilation, longer intensive care unit and

hospital stays, and higher mortality rates. (1-3)

However, patients subjected to restricted fluid management at the early stage of ARDS

-> lower mortality, longer ventilator-free days (4-6)

1) Rosenberg AL et al. J Intensive Care Med. 2009;24:35-46.

- 2) Van Mourik N et al. PLoS One. 2019;14:e0224563.
- 3) Jia X et al. *Chest.* 2008;133:853-861.
- 4) Wiledemann HP et al. N Engl J Med. 2006;354:2564-2575.
- 5) Silversides JA et al. Intensive Care Med. 2017;43:155-170.
- 6) Malbrain ML et al. Anaesthesiol Intensive Ther. 2014;46:361-380.

N Engl J Med 2006;354:2564-75.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Comparison of Two Fluid-Management Strategies in Acute Lung Injury

The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network*

The mean cumulative fluid balance during the first seven days -> 136±491 ml vs. 6992±502 ml (*P<0.001*)

The number of ventilator-free days during the first 28 days -> 14.6±0.5 vs. 12.1±0.5 (*P<0.001*)

Days not spent in the intensive care unit during the first 28 days -> 13.4±0.4 vs. 11.2±0.4, (*P<0.001*)

The incidence or prevalence of shock

-> 10% vs. 14% (P=0.06)

The rate of death at 60 days

-> 25.5% vs. 28.4% (P=0.30).

The primary end point : Death at 60 days Secondary end points : Ventilator-free days Organ-failure-free days

DISCUSSION – Recirculation

Insignificant difference in recirculation

-> No significant difference in peripheral oxygenation and pre-oxyPO2/postoxyPO2

J Thorac Dis 2018;10(Suppl 5):S606-S612

Review Article

Cannulation for veno-venous extracorporeal membrane oxygenation

Jonas Andersson Lindholm^{1,2}

¹ECMO Centre, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden;
²Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
Correspondence to: Jonas Andersson Lindholm, MD. ECMO Center, Karolinska University Hospital, Eugeniavägen 23, 171 76 STOCKHOLM,
Sweden. Email: jonas.andersson-lindholm@sll.se.

Tip Base 4L/min <MRI velocity scan>

At pump flow of 4 L/min and with all the side holes open the cannula is **mainly draining from the most proximal holes** and almost nothing at the tip.

CONCLUSION

Placement of a drainage cannula into the RA

->More stable VV-ECMO treatment without increasing recirculation.

less unnecessary volume replacement, more awaken ECMO.

-> Not related to survival outcome.

경청해주셔서 감사합니다.