

ECMO bridging to Lung transplantation

Ha Eun Kim, Department of thoracic and cardiovascular surgery, Severance Hospital, Yonsei University College of Medicine

Development of ECMO

- ECMO, extracorporeal membrane oxygenation
 - developed in the late 1960s and used for human since early 1970s by a team of Robert H. Bartlett
 - to achieve prolonged extracorporeal circulation by prevent the interface between air and blood in the original CPB system

Prolonged Extracorporeal Oxygenation for Acute Post-Traumatic Respiratory Failure (Shock-Lung Syndrome) — Use of the Bramson Membrane Lung N Engl J Med 1972;286:629-634

Prolonged extracorporeal cardiopulmonary support in man JTCVS 1974;68(6):918-932 Bartlett RH, Andrews AF, Toomasian JM, Haiduc NJ, Gazzaniga AB. Extracorporeal membrane oxygenation for newborn respiratory failure: forty-five cases. Surgery 1982;92(02):425–433

→ ECMO become standard treatment for pediatric cardiac & respiratory failure unresponsive to other treatment

Increasing role of ECMO in respiratory failure

- H1N1 influenza pandemic in 2009
 - improved outcomes in ARDS patients cared by ECMO [CESAR trial]

Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial Lancet 2009; 374: 1351-63

Figure 2: Kaplan-Meier survival estimates

➔ the number of patients supported on ECMO, opportunity to support critically ill patients grown dramatically

ECMO bridging- era of LAS

- Lung allocation score (LAS) era
 - adopted since 2005

Effect of the lung allocation score on lung transplantation in the United States

J Heart Lung Transplant 2016;35:433-439

- priority based on waiting time \rightarrow prioritization of sicker patients
- decreasing waiting list time for patients with the most urgent need for transplant
 - → problems the transplant centers faced
 - 1) how to maintain optimal status of sicker patients during waiting time
 - 2) how to extend the lives of critically-ill patients at risk

ECMO bridging to lung transplant

Considered as a risk factor for poor survival

Who is the high-risk recipient? Predicting mortality after lung transplantation using pretransplant risk factors

J Thorac Cardiovasc Surg 2009;138:1234-38

TABLE 1. Risk factor score model variables

	Points	OR	95% CI	P value
sk score variables				
ECMO	6.9	6.937	2.391-20.127	.000

- RE-evaluate use of ECMO as a pre-transplant support modality
 - modern pumps, heparin-coated silicone membrane

Extracorporeal Membrane Oxygenation in Awake Patients as Bridge to Lung Transplantation

Am J Respir Crit Care Med Vol 185, Iss. 7, pp 763–768, Apr 1, 2012

TABLE 1. COMPARISON OF PATIENT CHARACTERISTICS AND OUTCOMES IN THE AWAKE ECMO GROUP AND THE MECHANICA	۱L
VENTILATION GROUP	

	Mechanical Ventilation Group	Awake ECMO Group	P Value
Death after LuTx, n (% of transplant patients)	12 (50)	4 (20)	0.02
Days on ICU (survivors only), median (range)	39 (4–74)	18 (1–69)	0.07
Days in hospital stay (survivors only), median (range)	67 (23–90)	38 (20–87)	0.06

Awake Extracorporeal Membrane Oxygenation as Bridge to Lung Transplantation: A 9-Year Experience

Table 4. Survival Outcomes

Ri

Outcomes	No./at Risk	Percentage (%)
All patients who underwent lung transplantation	n = 40	
To discharge	37/40	92.5%
1-year	28/31	90.3%
2-year	21/25	84.0%

ECMO bridging to lung transplant

Increasing use of ECMO bridging

Waitlist Mortality and Extracorporeal Membrane Oxygenation Bridge to Lung Transplant

(Ann Thorac Surg 2023;116:156-63)

April 2016 to December 2021, 445 bridged patients In UNOS database

Extracorporeal membrane oxygenation as a bridge to lung transplantation: Practice patterns and patient outcomes J Heart Lung Transplant 2024;43:77-84

ECMO bridging to lung transplant

- Allocation in Korea
 - 응급도 0
 - 1. 호흡부전으로 intubation ventilator 적용 중인 환자
 - 2. 체외막형 심폐기 (ECMO) 가동 중인 환자
 - 응급도 1
 - 1. NYHA IV 이면서 산소 투여 없이 ABGA PaO2 < 55mmHg
 - 2. NYHA IV이면서 mean PAP > 65mmHg or mean RAP > 15mmHg
 - 3. cardiac index < 2L/min/m² 인 경우

응급도 2	응급도3
 FEV1 < 25% PaO2 < 60mmHg mean RAP 10-15mmHg mean PAP 55-65 mmHg 	1. 단독 폐이식이 필요한 경우 2. 폐기종, 폐고혈압, DILD 3. FEV1 < 30% 4. 호흡부전으로 3번 이상 입원

Considerations for ECMO bridging

- Indication for ECMO bridging
- Configuration of ECMO
- Awakening
- Complications related to ECMO
- Duration of ECMO support

Considerations for ECMO bridging: indication

- Disease diagnosis and severity to determine allocation priority
- Functional, psychosocial, and nutritional status of the patient
- Other disease factors that might affect life expectancy pre- and post-transplant
 - → Refractory hypoxemia or hypercarbia or right heart failure despite maximal medical management

Considerations for ECMO bridging: indication

- Contraindications
 - Ineligibility for lung transplantation
 - Irreversible end-organ failure affecting multi organs
 - Sepsis and bacteremia
 - Contraindications to systemic anticoagulation
 - Uncontrolled metastatic disease
 - Acute intracerebral hemorrhage or stroke

 \rightarrow Need multidisciplinary team approach

Bridging to lung transplantation with extracorporeal circulatory support: when or when not? *J Thorac Dis* 2017;9(9):3352-3361

Considerations for ECMO bridging: indication & configuration

Awake Extracorporeal Membrane Oxygenation as Bridge to Lung Transplantation: A 9-Year Experience

YONSEI UNIVERSITY

Considerations for ECMO bridging: configuration

Table 1 Cannulation strategies for specific pre-lung transplant disease states			
Mechanism of failure	Cannulation approach	ECMO parameters	
Hypercapnic respiratory failure			
Cystic fibrosis, COPD	Small bore bicaval	Goal ECMO flow of 2.5 to 3.5 L/min	
		Titrate sweep for goal PaCO2 of 35-45 with no resting dyspnea	
Hypoxic respiratory failure			
Idiopathic pulmonary fibrosis	Large bore bicaval or femoral-IJ	Goal ECMO flows of 3.5 to 5 L/min	
		May require HFNC to maintain SpO ₂ >90%	
Right ventricular failure			
Group 1 pulmonary hypertension	Peripheral VA ECMO	Goal ECMO flows of 2.5 to 3.5 L/min to offload the right ventricle	
Group 3 pulmonary hypertension	Large bore bicaval with atrial septostomy or RV bypass ECMO	Goal ECMO flows of >3.5 L/min or more as needed to maintain SpO $_2$ >90%	
ECMO, extracorporeal membrane oxygenation; COPD, chronic obstructive lung disease; IJ, internal jugular; HFNC, high flow nasal cannula; VA, venoarterial.			

Ann Cardiothorac Surg 2020;9(1):29-41

Considerations for ECMO bridging: Awakening

Am | Respir Crit Care Med Vol 185, Iss. 7, pp 763–768, Apr 1, 2012

- Awakening ECMO
 - Spontaneous breathing, non-sedated related to pre-transplant vitality and

post-transplant survival

Extracorporeal Membrane Oxygenation in Awake Patients as Bridge to Lung Transplantation

 $B_{0.6}$ B_{0

Long- and short-term clinical impact of awake extracorporeal membrane oxygenation as bridging therapy for lung transplantation Kim et al. Respiratory Research (2021) 22:306

Considerations for ECMO bridging: Awakening

Awakening ECMO

Table 1. Advantages and disadvantages of awake ECMO

YON SEI UNIVERSITY

Awakening in extracorporeal membrane oxygenation as a bridge to lung transplantation Acute and Critical Care 2022 February 37(1):26-34

Table 2. Indications and contraindications of awake ECMO

Status	Advantage	Disadvantage	Awake ECMO	
Maintenance of physical activity	Maintain muscle mass and strength	Increase the risk of catheter dislocation	Indication Ability to protect airways	
Spontaneous breathing	Maintain respiratory muscle and diaphragm function	Increase transpulmonary pressure and the risk of ventilator-induced lung injury	Low dose or no vasoactive requirement No need for high PEEP	
	Maintain the expansion of the chest wall and lungs	Increases oxygen consumption and CO ₂ production	Contraindication	
	Favor venous return and maintains cardiac filling		Hemodynamic unstable (high dose of vasoactive drugs)	
Avoiding intubation	Reduce the risk of ventilator-associated pneumonia	Sometimes emergency intubation may be required.	Deep sedation and muscle relaxation (RASS 3-4)	
Awake through reducing use of sedative and analgesic	Reduce the risk of delirium	Increase pain, discomfort, and anxiety	Active bleeding Malignant arrhythmia Brain injury	
	Enhance communication between the medical staff an			
	Allow participation in desiring making		Unstable blood flow mechanics	
	Allow participation in decision making		Unexpected high respiratory rate or severe anxiety	

Considerations for ECMO bridging: Duration of ECMO support

Impact of Extracorporeal Membrane Oxygenation Bridging Duration on Lung Transplant Outcomes Ann Thorac Surg. 2024 May 11:S0003-4975(24)00361-8.

Considerations for ECMO bridging: complications of ECMO

- Related to circuit and cannula
- Bleeding complications
- Infection
- Multiorgan failure including acute renal failure requiring renal replacement therapy

Deaths in bridging	Studies involved	n (deaths/ total)	%
Total	10	123/534	23.03
Right heart failure	3	11/137	8.03
Multiple organ failure	4	13/185	7.03
Bleeding (not Cranial)	2	5/107	4.67
Cranial bleeding	3	7/222	3.15
Sepsis	2	6/207	2.90
Cardiopulmonary resuscitation	1	2/87	2.30
Cerebrovascular accident	1	2/120	1.67
Massive haemolysis	1	1/87	1.15
Primary graft failure	1	1/120	0.83
Respiratory failure	1	1/120	0.83

TABLE 2 Causes of death in ECMO bridging

Extracorporeal membrane oxygenation as a bridge vs. nonbridging for lung transplantation: A systematic review and meta-analysis *Clinical Transplantation*. 2021;35:e14157.

Considerations for ECMO bridging: experience in Korea

Extracorporeal membrane oxygenation as a bridge to lung transplantation: analysis of Korean organ transplantation registry (KOTRY) data Ko et al. Respiratory Research (2020) 21:20

-non-published data, severance hospital Jan 2013 – Dec 2022 -a total of 405 BTT, ECMO-bridged 128 patients -no survival difference between the groups

Current issues

- ECMO bridge to lung transplantation is feasible, for sure.
- 'When, To whom, How, How long'
- Awakening strategy
- Proper duration for ECMO bridging

