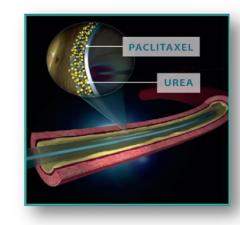
Experience of DCB in VA intervention


허균흉부외과 허 균

Hemodialysis access (HD access)

- Non tunneled catheter (JVC etc..)
- Tunneled catheter (perm catheter etc..)
- AV fistula
- AV graft



Drug Coating Balloon

IN.PACT Admiral balloon matrix coating:

- Paclitaxel
- Urea excipient that controls drug release

DCB inflation:

- Matrix coating contact with the blood
- Urea hydrates causing the release of paclitaxel
- Paclitaxel binds to the wall due to its hydrophobic and lipophilic properties

Fig. 1. Mechanism of action for IN.PACT Admiral DCB.

Paclitaxel penetration:

- Through vessel wall deep
 into the media and adventitia
- Interferes with the causes of restenosis
- Can remain in the vessel wall for over 180 days at therapeutic levels

KDOQI 2019

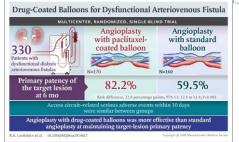
Statements: Treatment of Clinically Significant AV Access Stenosis

Angioplasty

15.5 KDOQI considers it reasonable to use balloon angioplasty (with high pressure as needed) as primary treatment of AVF and AVG stenotic lesions that are both clinically and angiographically significant. (Expert Opinion)

Note: Angiographically present stenosis without accompanying clinical signs and symptoms is inadequate to treat/intervene upon.

- 15.6 There is inadequate evidence for KDOQI to make a recommendation regarding the use of specialized balloons (drugcoated or cutting) versus standard high-pressure balloons in the primary treatment of AVF and AVG stenosis.
- 15.7 There is inadequate evidence for KDOQI to make a recommendation regarding the optimal duration of balloon inflation time during angioplasty to improve intervention primary patency in the treatment of AVF or AVG stenosis.
- 15.8 KDOQI considers it reasonable that a careful patient-individualized approach to the choice of balloon type for angioplasty of clinically significant AVF and AVG stenosis be based on the operator's best clinical judgment and expertise. (Expert **Opinion**)


NEJM 2020

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Drug-Coated Balloons for Dysfunctional Dialysis Arteriovenous Fistulas

Robert A. Lookstein, M.D., M.H.C.D.L., Hiroaki Haruguchi, M.D. Connorth Ourial M.D. M.R.A. Ida Wainbarg M.D. Lanuelai Ph.D. TH NEW ENGLAND JOURNAL & MEDICINE

Kidney International. 2021

www.kidney-international.org

clinical trial

Check for updates

OPEN

A multicenter randomized controlled trial indicates that paclitaxel-coated balloons see commentary on page 278 provide no benefit for arteriovenous fistulas

Narayan Karunanithy^{1,25}, Emily J. Robinson^{2,25}, Farhan Ahmad³, James O. Burton^{4,5}, Francis Calder⁶ Simon Coles⁷, Neelanjan Das⁸, Anthony Dorling^{2,6}, Colin Forman⁹, Ounali Jaffer¹⁰, Sarah Lawman¹¹ Raghuram Lakshminarayan¹², Rhys Lewlellyn¹³, Janet L. Peacock^{2,14}, Raymond Ramnarine¹ Irene Rebollo Mesa², Shoaib Shaikh¹⁶, James Simpson¹⁷, Kate Steiner¹⁸, Rebecca Suckling¹⁵ Laszlo Szabo²⁰, Douglas Turner²¹, Ashar Wadoodi²², Yanzhong Wang², Graeme Weir²³, C. Jason Wilkins^{6,24}, Leanne M. Gardner² and Michael G. Robson²

¹Department of Interventional Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK; ²Faculty of Life Sciences and Medicine, King's College London, London, UK; ³Department of Radiology, Royal Berkshire NHS Foundation Trust, Reading, UK; ⁴Department of Cardiovascular Sciences, University of Leicester, Leciester, UK; ⁵Department of Renal Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK; ⁶Department of Nephrology and Transplantation, Guy's and St Thomas' NHS Foundation Trust, London, UK; ⁷Department of Radiology, Portsmouth Hospitals NHS Trust, Portsmouth, UK; ⁸Department of Nephrology, East Kent Hospitals NHS Foundation Trust, Canterbury, UK; ⁹Department of Nephrology and Transplantation, Royal Free London NHS Foundation Trust, London, UK; 10 Department of Radiology, Barts Health NHS Trust, London, UK; 11 Department of Nephrology, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK; 12Department of Radiology, Hull University Teaching Hospitals NHS Trust, Hull, UK; ¹³Department of Radiology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK; ¹⁴Department of Epidemiology, Dartmouth College, Hanover, New Hampshire, USA; 15 Department of Radiology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK, 16 Department of Radiology, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK; 17 Department of Radiology, Lancashire Teaching Hospitals NHS Trust, Preston, UK; ¹⁸Department of Radiology, East and North Hertfordshire NHS Trust, Stevenage, UK; ¹⁹Department of Nephrology, Epsom and St Helier University Hospitals NHS Trust, Carshalton, UK; ²⁰Department of Nephrology and Transplantation, Cardiff and Vale University Health Board, Cardiff, UK: 21 Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; ²²Department of Nephrology and Transplantation, St George's Healthcare NHS Trust, London, UK; ²³Department of Radiology, Lothian NHS, Edinburgh, UK; and ²⁴Department of Radiology, King's College Hospital NHS Foundation Trust, London, UK

Claude

When it comes to the patency rates of arteriovenous (AV) fistulas treated with drug-coated balloons (DCBs), several studies have reported the following:

- 1. Primary Patency: Primary patency refers to the fistula remaining open and functional without any intervention after the initial DCB angioplasty.
- At 6 months: Primary patency rates range from approximately 50% to 70%.
- At 12 months: Primary patency rates range from approximately 30% to 50%.
- 2 Target Lesion Primary Patency: Target lesion primary patency refers to the treated lesion (stenosis) remaining open and functional without the need for repeat intervention.
- At 6 months: Target lesion primary patency rates range from approximately 60% to 80%.
- At 12 months: Target lesion primary patency rates range from approximately 40% to 60%.

It's important to note that these patency rates can vary across different studies and patient populations. Some factors that can influence the patency rates include the location and severity of the stenosis, the type of AV fistula (radiocephalic, brachiocephalic, or graft), and the patient's comorbi \downarrow 2s.

VISUAL ABSTRACT IN.PACT AV Access Randomized Trial of Drug-Coated Balloons for Dysfunctional Arteriovenous Fistulae: Clinical Outcomes Through 36 Months ***** 29 Global Site Sustained superior April 2017 -May 2018 effectivenes of DCB > nlain Independen adjudication Single-blind balloon @36 month Clinical Trial Registratic NCT03041467

No.	Name or country or both	Investigators	Journal and year	Subjects	Balloon	Primary endpoint	Result	Comments
1	PAVE (United Kingdom)	Karunanithy et al. ⁵	Kidney Int. 2021	212	Lutonix	Time to loss of TLPP at 6 mo	Negative: P = 0.44 (159 d [P] vs. 215 d [C])	75% of operators blinded Included maturing AVF
2	Lutonix IDE	Trerotola <i>et al.</i> ³	Clin J Am Soc Nephrol. 2018	285	Lutonix	TLPP at 6 mo	Negative: $P = 0.06$ (62% [P] vs. 58% [C])	No maturing AVF
3	Medtronic IDE (United States, New Zealand, Japan)	Lookstein <i>et al.</i> 4	N Engl J Med. 2020	330	IN.PACT	TLPP at 6 mo	Positive: P <0.001 (82.2% [P] vs. 59.5% [C])	No maturing AVF
4	Australian	Swinnen <i>et al</i> . ^{S1}	J Vascular Access. 2018	132	IN.PACT	LLL at 6 mo	Positive: P = 0.0002 (0.045 mm/mo [P] vs. 0.23 [C])	Mandated ultrasonogram 48% in-stent restenosis
5	Singapore	Irani <i>et al.</i> ^{S2}	Radiology. 2018	119	IN.PACT	TLPP at 6 mo	Positive: P = 0.03 (81% [P] vs. 61% [C])	Mandated angiogram at 6 mo; AVG = 21
6	Spain	Moreno-Sanchez <i>et al.</i> ^{S3}	Cardiovasc Intervent Radiol. 2020	136	Passeo-18 Lux	Time to loss of TLPP at 6 mo	Negative: P = 0.068 (153 d [P] vs. 142 d [C])	Mandated angiogram at 6 mo; AVG = 12
7	France	Therasse <i>et al</i> . ⁵⁴	J Vasc Interv Radiol. 2021	120	Passeo-18 Lux	LLL at 6 mo	Negative: <i>P</i> = 0.082 (0.64 mm [P] vs. 1.13 mm [C])	Mandated angiogram at 6 mo

Table 1 | Randomized controlled trials with 3 different DCBs

AVF, arteriovenous fistula; AVG, arteriovenous graft; C, control; DCB, drug-coated balloon; IDE, investigational device exemption; IN.PACT, IN.PACT AV Access Study; LLL, late lumen loss; PAVE, Paclitaxel-coated Balloons and Angioplasty of Arteriovenous Fistulas (study); Rx, different drug-coated balloons; TLPP, target lesion primary patency. Note the variation and differences in the balloons used, the endpoints, the use of a mandated angiographic or ultrasonogram procedure at 6 months, the presence or absence of maturing AVFs and AVGs, and the final results.

Purpose of the study

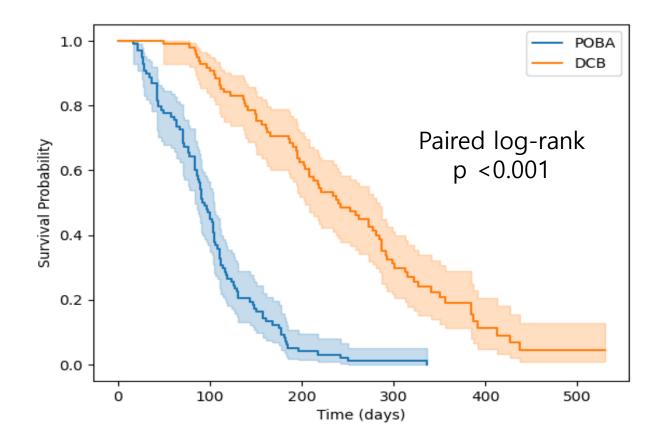
 Comparison of the effects of plane old balloons and drug coated balloons in the same patient

Method

- Single center, retrospective study
- Inclusion criteria
 - 2022.01 ~2023.07
 - AVF patency after the most recent PTA <180 days or average patency after the last three PTAs is <180 days
 - High pressure balloon angioplasty with drug coated balloon
- Exclusion criteria
 - No information for previous PTA

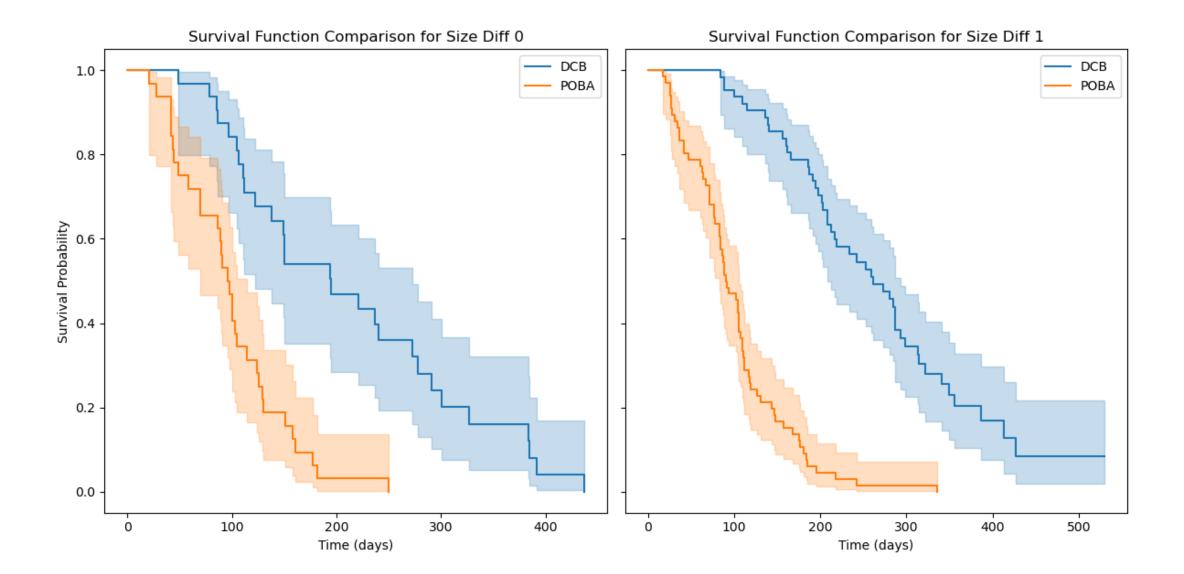
Method

- Drug coated balloon size
 - Only drug coated balloons with a diameter of 7mm or less can be used
 - If suitable sized drug-coated balloons exist:
 : use proper sizes of drug-coated balloons
 - If vessel dilatation of more than 7 mm is required:
 : angionlasty with available drug coated balloon followed by a larger sized high pressure balloon

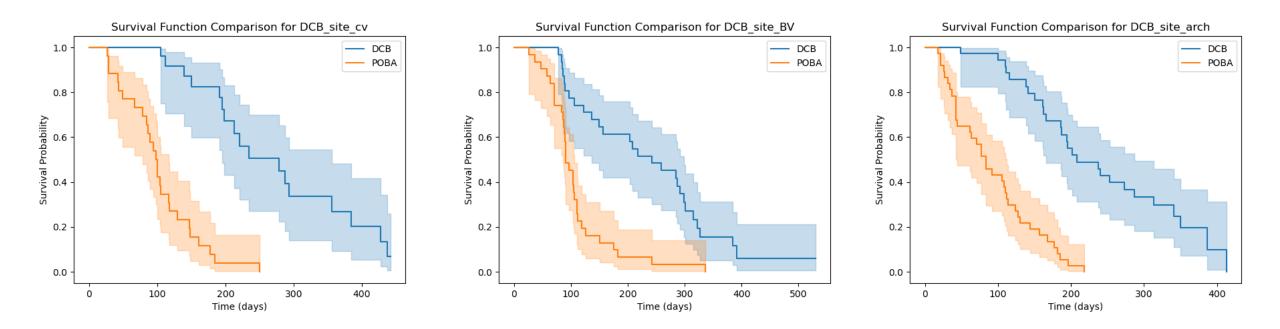

Method

- Statistical analysis
 - Kaplan-Meier Survival curve
 - Paired Log-Rank Test
 - Cox Proportional Hazards Model for Paired Data

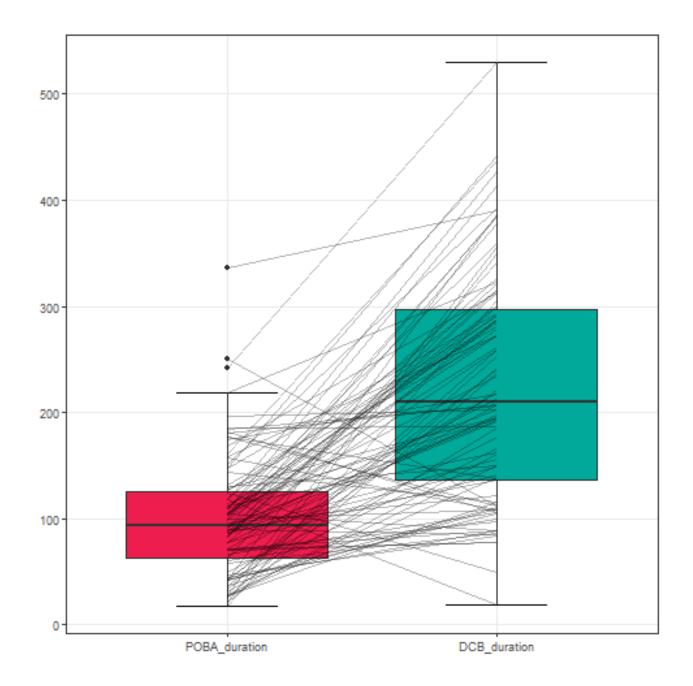
Baseline characteristics


Variables		n=98
age, mean ± SD		65.1 ± 10.5
sex, n (%)	F	54 (55.1)
	Μ	44 (44.9)
HTN, n (%)	0	19 (21.6)
	1	69 (78.4)
DM, n (%)	0	40 (45.5)
	1	48 (54.5)
DCB site	cephalic vein	26 (26.5)
	basilic vein	31 (31.6)
	brachial vein	1 (1.0)
	cephalic arch	37 (37.8)
	central vein	3 (3.1)
DCB_size, n (%)	5/120	2 (2.0)
	6/120	5 (5.2)
	7/120	30 (30.6)
	7/80	61 (62.9)
Use of	DCB only	32(32.7)
standard balloon	DCB + standard balloon	66 (67.3)

Target-Lesion Primary Patency



	Hazard ratio	CI lower 95%	Cl upper 95%	P-value
DCB patency (vs. standard balloon)	0.08	0.04	0.16	<0.005


Target-Lesion Primary Patency according to the use of large sized balloons

Target-Lesion Primary Patency by lesions

DCB patency (vs. standard balloon)	Cephalic vein	Basilic vein	Cephalic arch
HR (95% CI)	0.04 (0.01-0.30)	0.11 (0.04-0.32)	0.09 (0.03-0.27)
P-value	< 0.005	< 0.005	< 0.005

	Mean ± SD
POBA	100 ± 56
DCB±POBA	224 ± 106

Drug-coated balloons and dialysis vascular access: is there light at the end of the tunnel . . .

Prabir Roy-Chaudhury^{1,2}, Theodore F. Saad³ and Scott Trerotola⁴

This commentary uses the negative results of the PAVE (Paclitaxelcoated Balloons and Angioplasty of Arteriovenous Fistulas) study to (i) discuss the role of drug-coated balloons in the armamentarium of therapies for dialysis vascular access stenosis and (ii) suggest a more patient centered, individualized, and precision medicine–based approach for the future care of patients with dialysis vascular access dysfunction.

Kidney International (2021) **100,** 278–280; https://doi.org/10.1016/j.kint.2021.06.009 Copyright © 2021, International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

primary endpoint of the study was the time in days to a loss of target lesion primary patency, with secondary endpoints of time to loss of dialysis access circuit primary and cumulative patency.

The PAVE study had a number of positive attributes, in that it (i) was an investigator-initiated study; (ii) had a study design that mandated that \geq 75% of the repeat interventions would be performed by a different interventionalist from the one who had performed the index procedure (thus partly addressing the operator blinding issue); and (iii) had strict inclusion, exclusion, and design criteria that allowed for a focus on the target lesion.

The PAVE study, however, did not show any improvement in target lesion primary patency using the Lutonix DCB

감사합니다