Healing the Lungs Non-Surgical Solutions for Pneumothorax

Sumin Shin Dept. of thoracic and cardiovascular surgery Ewha womans University, college of medicine, Mokdong hospital

Pneumothorax

VS

Current consensus & guideline for pneumothorax

consensus conference

Management of Spontaneous Pneumothorax*

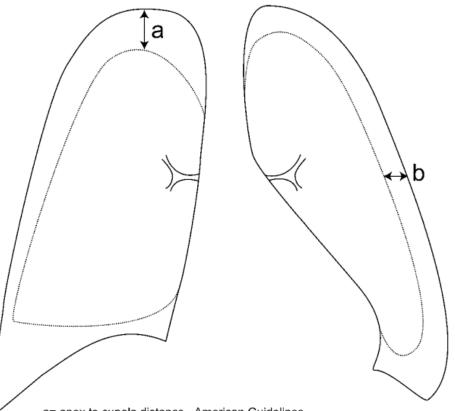
An American College of Chest Physicians Delphi Consensus Statement

> Management of spontaneous pneumothorax: British Thoracic Society pleural disease guideline 2010

Andrew MacDuff,¹ Anthony Arnold,² John Harvey,³ on behalf of the BTS Pleural Disease Guideline Group

Video-assisted thoracic surgery for pneumothorax: republication of a systematic review and a proposal by the guideline committee of the Japanese Association for Chest Surgery 2014

Delphi technique


Structured communication method used to gather expert opinions and achieve consensus on complex issues.

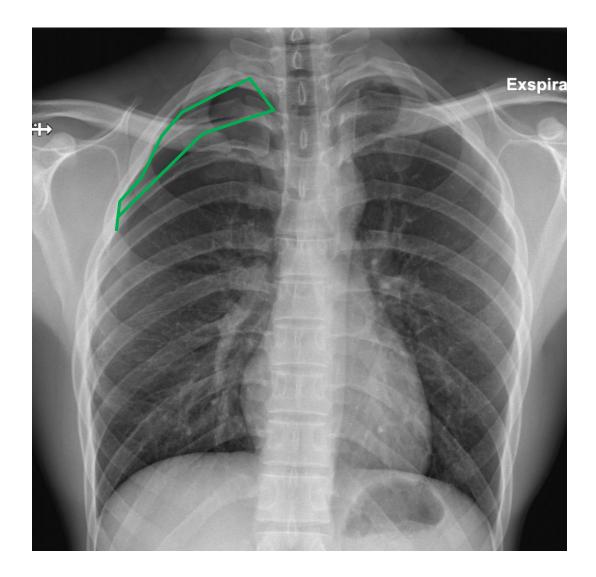
- several rounds of questionnaires
- summary of the experts' responses
- revise their earlier answers after feedback

Factors for decision-making

- Type of pneumothorax primary or secondary
- Amount of pneumothorax small or large
- Symptom
- Clinical stability : RR, HR, BP, saturation
- Risk of recurrence
- Patient preference
- Ability to tolerate a surgical procedure
- Accessibility to the healthcare facility

Small vs Large amount

ACCP guideline


Apex to cupola Small < 3cm Large ≥ 3cm

BTS guideline

Lung margin to chest wall at the level of hilum Small < 2cm Large ≥ 2cm

a= apex to cupola distance - American Guidelines b= interpleural distance at level of the hilum - British Guidelines

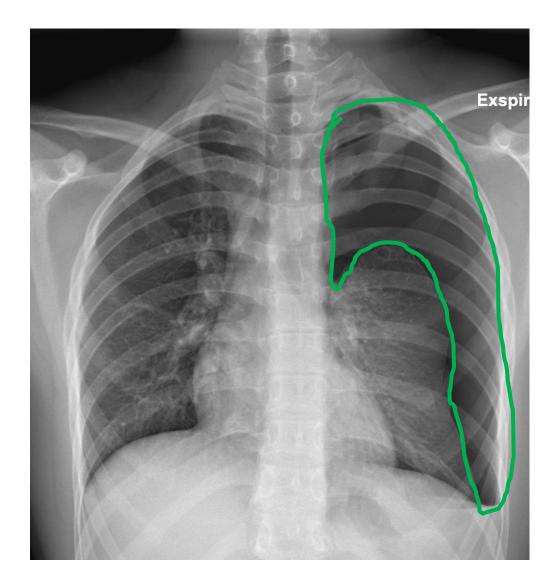
Clinically Stable Primary Spontaneous Pnx with a Small Amount

M/22 Dyspnea (2 days ago) V/S stable H/O VATS wedge resection, Lt d/t pnx

孕

A. Admission and catheter or tube insertionB. Observation and Repeat CXR to exclude progression

Clinically Stable Primary Spontaneous Pnx with a Small Amount


ACCP guideline

- Observed in ER for 3 to 6 hr and repeat chest
 X-ray
- Follow-up within 1-2 days after discharge
- Patient may be admitted if the live distant from hospital

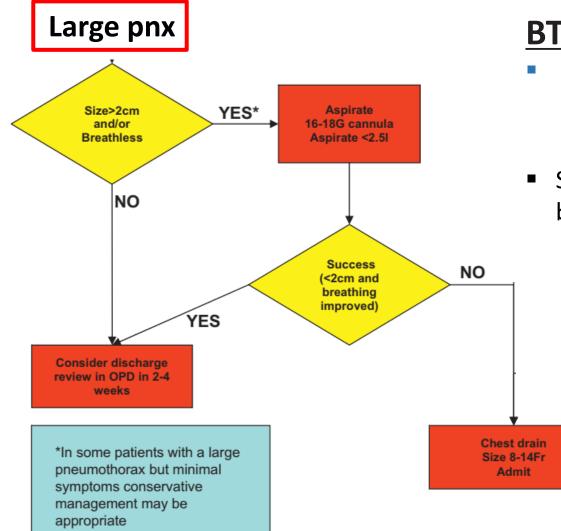
BTS guideline

- The presence of breathlessness influences
 the management strategy. (D)
- Patients with significant breathlessness (any size of pnx) should undergo active intervention. (A)
- Observation is the treatment of choice for small PSP without significant breathlessness. (B)
- Patients with a small PSP without breathlessness should be considered for discharge with early outpatient review.

Clinically Stable Primary Spontaneous Pnx with a large Amount

M/16 Chest discomfort (1 day ago) V/S stable

 $\mathbf{\hat{V}}$


A. Admission and DrainageB. Admission and AspirationC. Discharge with Small Bore Catheter andHeimlich Valve

Clinically Stable Primary Spontaneous Pnx with a large Amount

ACCP guideline

- Hospitalization and undergo drainage (very good consensus)
- : Small bore catheter or medium sized bore chest tube
- Drainage may be attached to Heimlich valve or water seal chest bottle
- Suction apply (some consensus)
- Discharge with small bore catheter and Heimlich, if lung has been expanded

Clinically Stable Primary Spontaneous Pnx with a large Amount

BTS guideline

- Aspiration as an initial intervention in patients with a large or symptomatic primary pneumothorax
- Selected asymptomatic patients with a large PSP may be managed by observation alone. (A)

Macduff et al Thorax 2010

Aspiration vs Drainage?

Outcomes	Illustrative comparative risks	s (95% CI)	Relative effect (95% CI)	No. of partici- pants	Quality of the evidence	
	Intercostal tube drainage	Simple aspiration	(55% CI)	(studies)	(GRADE)	
Immediate success rate Follow-up: 3 days to 24 months	714 per 1000	557 per 1000 (493 to 635)	RR 0.78 (0.69 to 0.89)	435 (6 studies)	⊕⊕⊕⊝ moderate ^a	
One-year success rate Follow-up: 12 to 24 months	766 per 1000	820 per 1000 (735 to 904)	RR 1.07 (0.96 to 1.18)	318 (4 studies)	⊕⊕⊕⊙ moderate ^a	
Hospitalization rate Follow-up: 3 days to 24 months	862 per 1000	517 per 1000 (215 to 1000)	RR 0.60 (0.25 to 1.47)	245 (3 studies)	⊕⊝⊝⊝ very low ^{a,b,c}	
Duration of hospital stay Follow-up: 12 to 24 months	Mean duration of hospital stay ranged across control groups from 4.04 to 7 days.	Mean duration of hospital stay in the intervention groups was 1.66 lower (-2.28 to -1.04).	-	387 (5 studies)	⊕⊕⊕⊝ moderate ^a	

Immediate success rate : Chest tube > Aspiration 1-yr success rate (recurrence) : No difference

Aspiration vs Drainage?

Simple Aspiration versus Drainage for Complete Pneumothorax A Randomized Noninferiority Trial

Tania Marx¹, Luc-Marie Joly⁴, Anne-Laure Parmentier², Jean-Baptiste Pretalli³, Marc Puyraveau², Jean-Claude Meurice⁵, Jeannot Schmidt⁶, Olivier Tiffet⁷, Gilbert Ferretti⁹, Dominique Lauque¹⁰, Didier Honnart¹¹, Faraj Al Freijat¹², Alain Eric Dubart¹³, Romain Genre Grandpierre¹⁴, Alain Viallon⁸, Dominique Perdu¹⁵, Pierre Marie Roy¹⁶, Toufiq El Cadi¹⁷, Nathalie Bronet¹⁸, Grégory Duncan¹⁹, Gilles Cardot²⁰, Philippe Lestavel²¹, Frédéric Mauny², and Thibaut Desmettre¹

2009-2015, 31 hospital

Prospective open-label randomized noninferiority trial

Aspiration vs drainage (chest tube) ; 402 pt

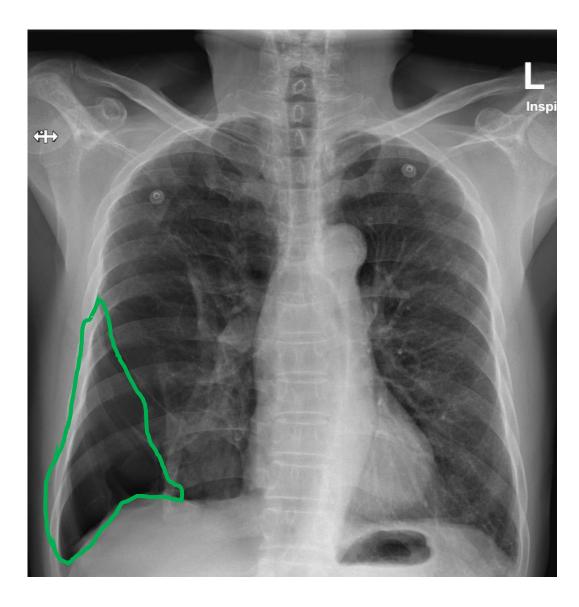
First episode and complete of primary spontaneous pneumothorax

Primary outcomes : pulmonary expansion 24 hr after procedure Secondary outcomes : tolerance of treatment, adverse event, recurrence within 1 yr

Aspiration vs Drainage?

Treatment failure

: 29% vs 18% (difference in failure rate, 0.113; 95% CI, 0.026-0.200).


Recurrence

: 20 % vs 27% (frequency difference, 20.07; 95% CI, 20.16, 10.02)

The aspiration group experienced

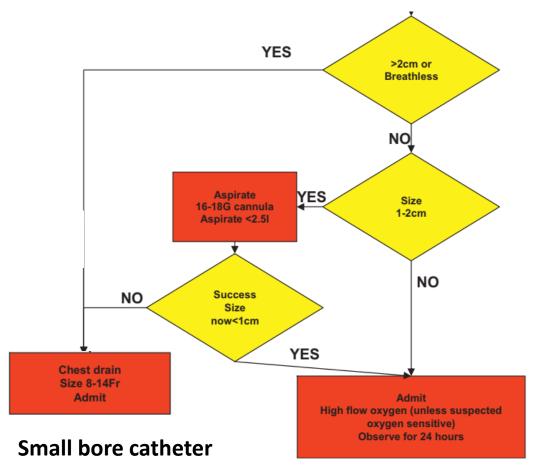
- Less pain overall (mean difference, 21.4; 95% CI, 21.89, 20.91)
- Less pain limiting breathing (frequency diff, 20.18; 95% CI,20.27, 20.09)
- Less kinking of the device (frequency diff, 20.05; 95% CI, 20.09, 20.01).

Clinically Stable Secondary Spontaneous Pnx with a Large Amount

M/65 Dyspnea (1 day ago) V/S Tachycardia (HR=108) History of pneumothorax (4 yr ago)

 $\hat{\nabla}$

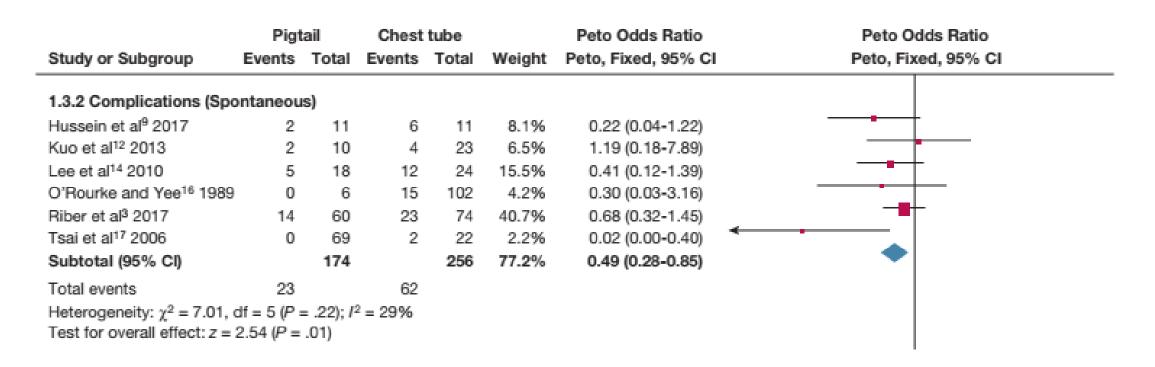
Admission and Drainage


- A. Small bore catheter (\leq 14Fr)
- B. Moderate bore chest tube (16-22Fr)
- C. Large bore chest tube (24-36Fr)

Clinically Stable Secondary Spontaneous Pnx with a large Amount

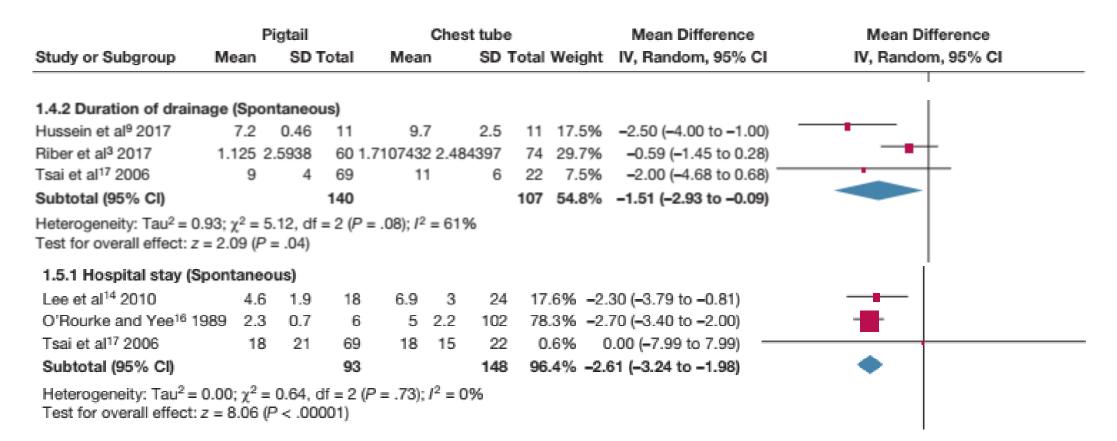
ACCP guideline

- Hospitalization and undergo placement of chest tube (very good consensus)
- 16-22Fr (moderate bore)
- Small bore maybe acceptable


Macduff et al Thorax 2010

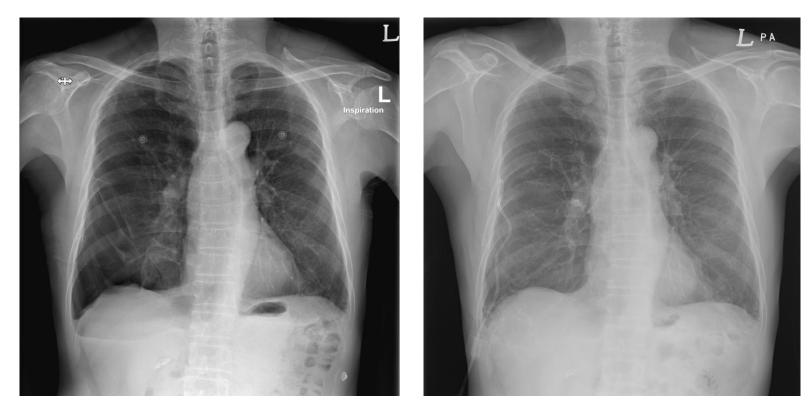
Small or Large? Size does matter?

	Pigt	ail	Chest	tube		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.1.2 Success (Spontaned	ous)						
Hussein et al ⁹ 2017	8	11	7	11	1.1%	1.14 (0.64-2.03)	
Kuo et al ¹² 2013	5	10	15	23	0.8%	0.77 (0.39-1.53)	
Lee et al ¹⁴ 2010	18	23	24	36	3.6%	1.17 (0.86-1.61)	
Liu et al ¹⁵ 2003	37	50	35	52	5.7%	1.10 (0.86-1.41)	
O'Rourke and Yee ¹⁶ 1989	6	6	96	102	8.0%	0.99 (0.80-1.22)	
Riber et al ³ 2017	46	60	51	74	8.3%	1.11 (0.90-1.37)	- -
Tsai et al ¹⁷ 2006	50	69	16	22	4.1%	1.00 (0.74-1.34)	
Subtotal (95% Cl)		229		320	31.6%	1.06 (0.95-1.18)	
Total events	170		244				
Heterogeneity: Tau ² = 0.00 Test for overall effect: $z = 1$			(P = .90);	/² = 0%	6		


Success rate, pigtail vs chest tube 170 of 229 (74.2%) vs 244 of 320 (76.2%) RR was 1.06 (95% CI 0.95-1.18)

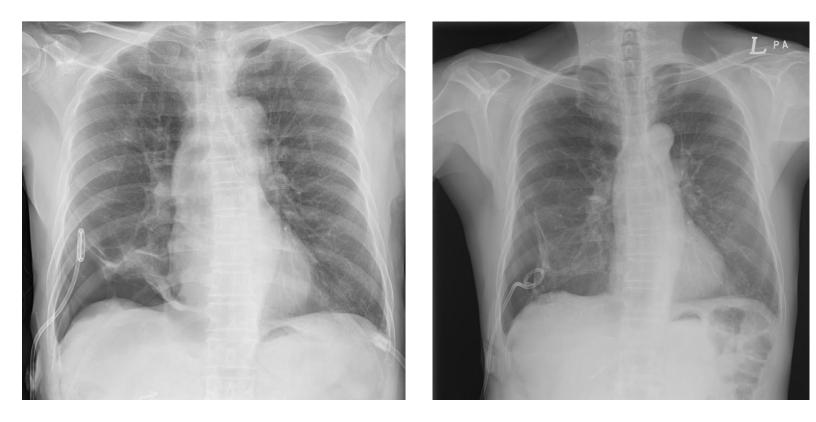
Small bore or Large bore? Size does matter?

Pigtail group had a lower complication rate than the chest tube group 23 pf 174 (13.2%) vs 62 of 256 (24.2%) Peto OR was 0.49 (95% CI 0.28-0.85)


Small bore or Large bore? Size does matter?

Pigtail group had a shorter drainage duration (-1.5) and hospital stay (MD -2.61)

Chang et al Chest 2018



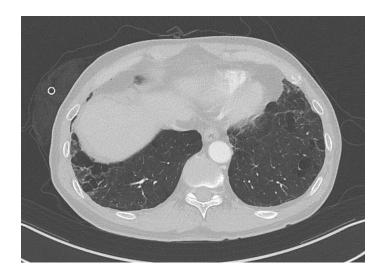
Moderate-sized chest tube (20Fr) Hospital stay : 3 days 1st OPD after discharge

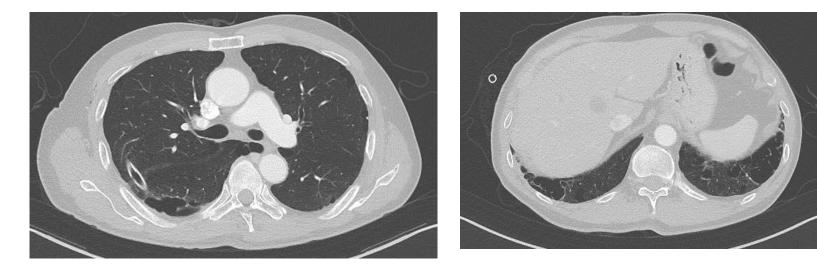
Small percutaneous catheter Hospital stay : 4 days

After 2 week 4th recurrence

Small percutaneous catheter

Prolonged air leak (HD 6)


Prolonged Air Leaks – how to manage?

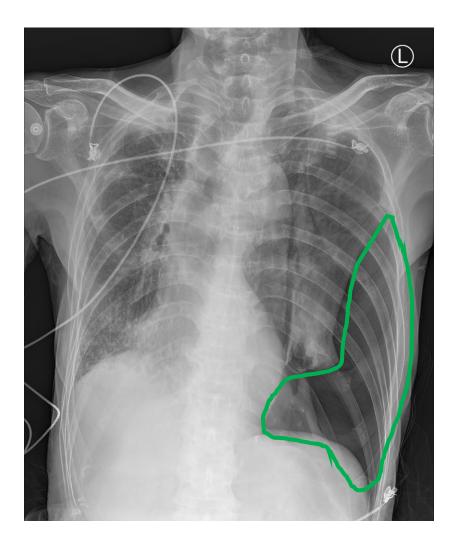

Definition : air leak more than 5 days

ACCP guideline

Air leakage persisting > 4 days should be evaluated for surgery (very good consensus)

Continued observation for 5 days (IQR, 4-7days)

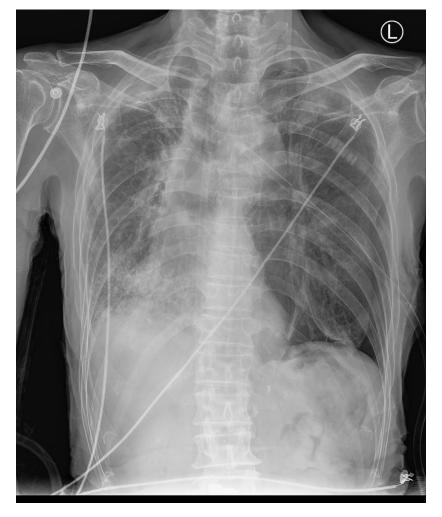
Prolonged Air Leaks – how to manage?

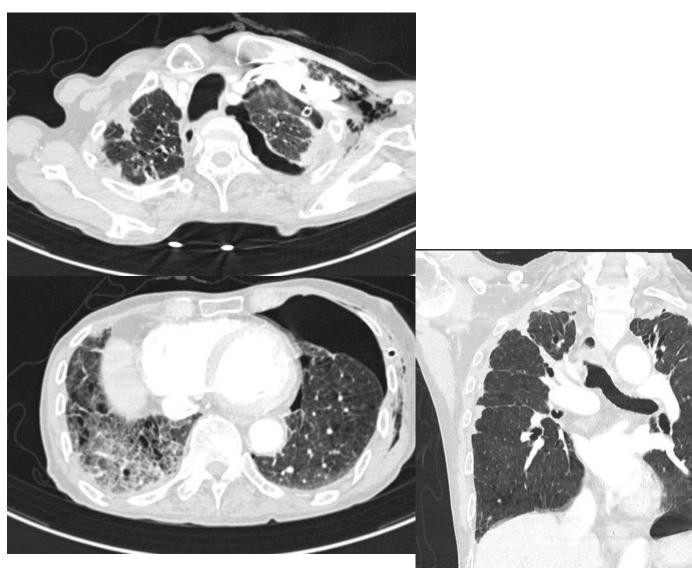

- A. Surgical exploration
- **B.** Chemical pleurodesis
- **C.** Chest tube insertion

Small bore catheter with Heimlich bag

7 days after discharge

Clinically Stable Secondary Spontaneous Pnx




M/80 Dyspnea (1 day ago) V/S stable COPD, CVA, 2VD, Tbc RLL infiltration, r/o pneumonia

 \mathbf{r}

Admission and Drainage

- A. Small bore catheter
- **B.** Moderate bore chest tube
- C. Large bore chest tube

24Fr chest tube

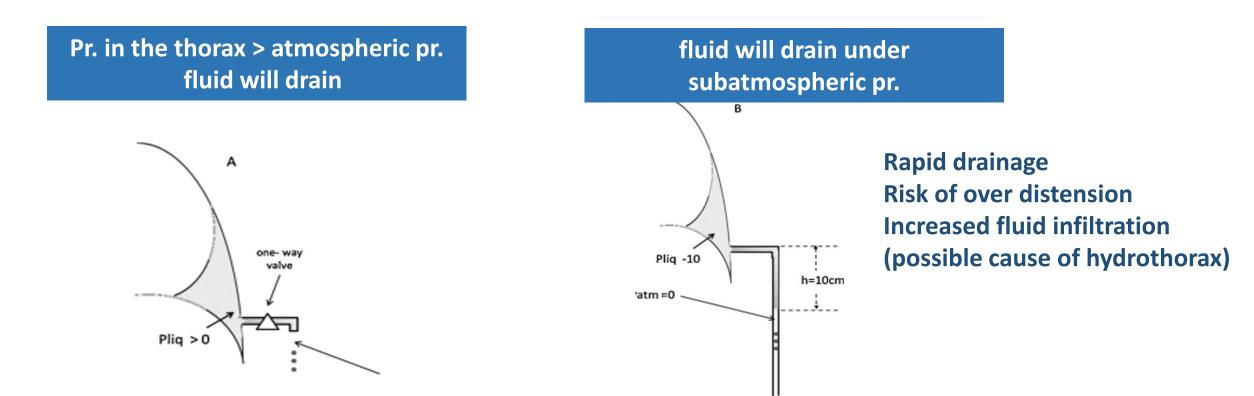
Prolonged Air Leaks – how to manage?

- A. Surgical exploration
- **B.** Chemical pleurodesis
- C. Additional chest tube insertion
- **D.** Observation

Additional chest tube (HD3)

Water seal only (suction off, HD 6)

After 1 day



1 st OPD
(2wks after Discharge)
No dyspnea

2 nd OPD, 1 week later	3	3 rd OPD, 1 month later				
		Pre				
	Ref	Pre	% Ref			
FVC	4.09	1.52	37			
FEV ₁	2.79	1.52	55			
	67	100				
Diffusing Capa	•					
DLCO mL/	mmHg/m	nin 19.3	8.6	45		

Suction should be employed?

The role of suction is to remove air from the pleural cavity faster than it can enter through a breach in the visceral pleura, promoting healing by bringing the visceral and parietal pleural layers together.

Drainage-dependent air leak

Underlying non-expandable lung from visceral pleural restriction

Pleural thickening, fibrosis Adhesion

- Shape mismatch between the lung and thoracic cavity
- Locally excessive tension and shear force on the pleura
- Excessively negative pleural pr \rightarrow significant distortion of the subpleural alveolar units

Transient pressure-dependent alveolar pleural fistula

Suction or water seal

Still controversial

no difference or no definitive benefit of suction over water seal for air leakage

Meta-analysis of 7 RCTs

longed air leakage	Suc	tion	Water	r seal			
Study	Events	Total	Events	Total	Risk r	atio (95% CI)*	Risk ratio, 95% CI*
Alphonso et al. ¹⁹	9	116	13	123	-0.30	(-0.10 to 0.04)	
Aved ¹⁶	7	50	1	50	0.12	(0.02 to 0.22)	
Brunelli et al.15	22	73	20	72	0.02	(-0.12 to 0.17)	
Cerfolio et al.'	14	70		70	0.11	(-0.00 to 0.23)	
Daneshvar et al. ¹⁶	3	13	6 6	18	-1.10	(-0.42 to 0.21)	
Marshall et al. ²	1	34	0	34	0.03	(-0.05 to 0.11)	
Prokakis et al. ¹⁷	7	47	5	44	0.04	(-0.10 to 0.17)	
Total		403		411	0.04	(-0.01 to 0.09)	•
Total events: 63 (suction), 51 (w Heterogeneity: Tau ² = 0.00, X ² ₆ Test for overall effect: Z = 1.53, *Mantel-Haenszel test, random	= 8.07, p = 0.23 p = 0.12	3, 1² = 26%					-0.2 -0.1 0.0 0.1 0.2 Favours suction Favours water seal

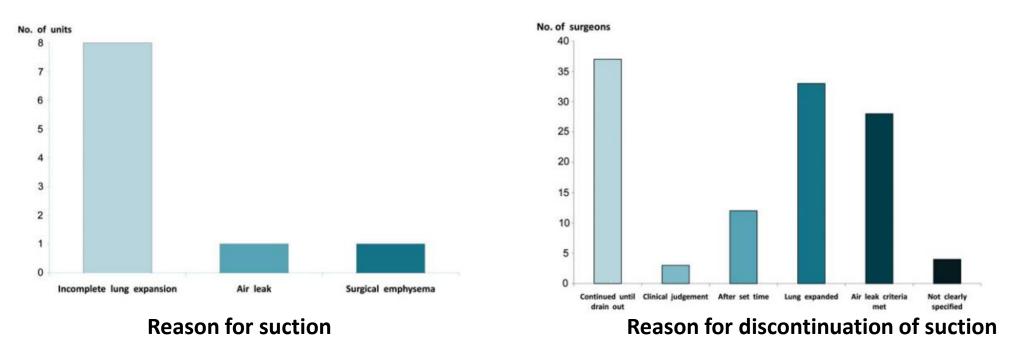
non significant trend toward a decreased incidence of prolonged air leak in the water seal group

Suction or water seal

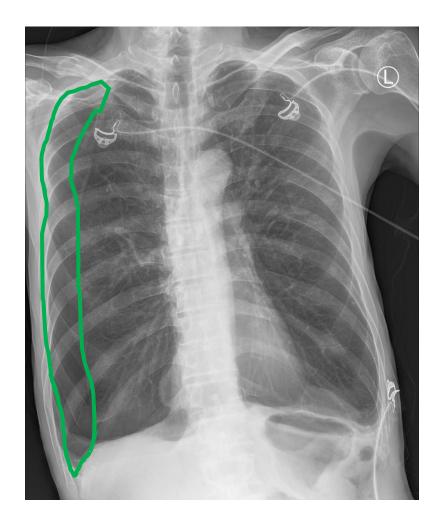
Chest tube duration

	Su	iction		No Suction				Mean Difference		Mean Difference	
Study or Subgroup	Mean [days]	SD [days]	Total	Mean [days]	SD [days]	Total	Weight	IV, Fixed, 95% CI [days]	Year	IV, Fixed, 95% CI [days]	
Marshall et al.	5.47	0.98	34	3.33	0.35	34	72.4%	2.14 [1.79, 2.49]	2002		
Ayed et al.	3.8	2.1	50	2.7	1.1	50	20.5%	1.10 [0.44, 1.76]	2003		
Brunelli et al.	10.3	7.6	73	11.5	8.3	72	1.3%	-1.20 [-3.79, 1.39]	2004		
Prokakis et al.	3.6	2.9	47	3.4	3.1	44	5.8%	0.20 [-1.04, 1.44]	2008		
Fotal (95% CI)			204			200	100.0%	1.77 [1.47, 2.07]		•	
Heterogeneity: Chi ² =	19.54, df = 3 (P	= 0.0002); P	= 85%								
Test for overall effect:	Z = 11.66 (P < 0	0.00001)								Favours [Suction] Favours [No Suction]	

Patients without suction had a shorter chest tube indwelling time, and the


difference was statistically significant (WMD 1.77 days, 95% CI 1.47–2.07).

Suction or water seal


Survey of current practice - thoracic and cardiothoracic unit in UK

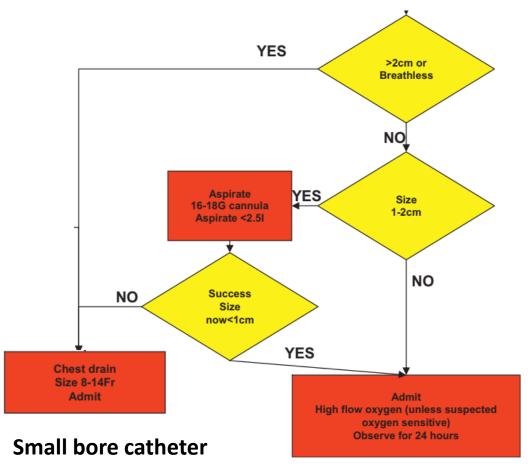
25 Unit, 91 Surgeons

Suction is routinely used by all surgeons in 11 units not routinely used by any surgeons in 5 units and used routinely by some surgeons in 9 units. Of the 91 surgeons represented, 62 (68%) routinely used suction

Clinically unstable Secondary Spontaneous Pnx

M/63 Dyspnea (1 hour ago) Unstable V/S 170/115-122-30-84% Current smoker COPD, HCC H/O pneumothorax :VATS wedge resection, Rt. (2021)

Admission and Drainage


Clinically Unstable Secondary Spontaneous Pnx

ACCP guideline

- Hospitalization and undergo placement of chest tube
 - (very good consensus)
- Large bore (24-28Fr) chest

tube

BTS guideline


Baumann et al Chest 2011

Macduff et al Thorax 2010

Clinically unstable Secondary Spontaneous Pnx

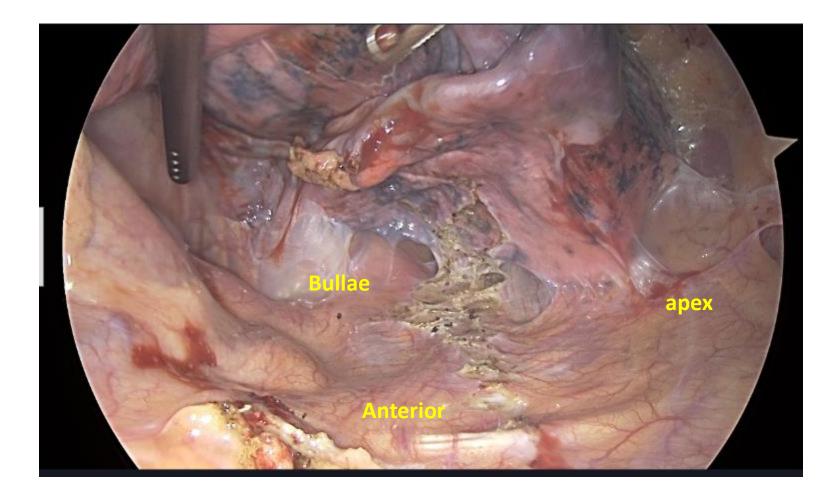
24Fr chest tube HD 4 : Air lekage (-) HD 5 : Discharge

Recurrence after 5 months

24Fr chest tube

Clinically unstable Secondary Spontaneous Pnx

Prolonged Air Leaks


Very poor pulmonary function

		Pre			
I	Ref	Pre	% Ref		
FVC 2	4.17	1.92	46		
FEV ₁	3.31	0.63	19		
-	74.92	32.69			
DLCO	mL/ı	mmHg/mi	n 22.20	6.35	29

- A. Surgical exploration
- **B.** Chemical pleurodesis
- C. Additional chest tube insertion
- **D.** Observation

VATS exploration, Rt.

- Non-surgical management of pneumothorax typically involves observation, needle aspiration, or drainage, with more conservative approaches maintained.
- Observation is suitable for small, asymptomatic pneumothoraces, while larger or symptomatic cases may require aspiration or drainage
- Prolonged air leaks can be managed with chest tubes, suction systems, and patience.
- However, if necessary, do not hesitate to perform surgery.