

2024 대한심장혈관흉부외과학회 제 38차 춘계통합학술대회 체외순환사 아카데미 교육

Prevention of coagulopathy after CPB

아주대학교의료원 심장혈관 흉부외과 박수진

Reference

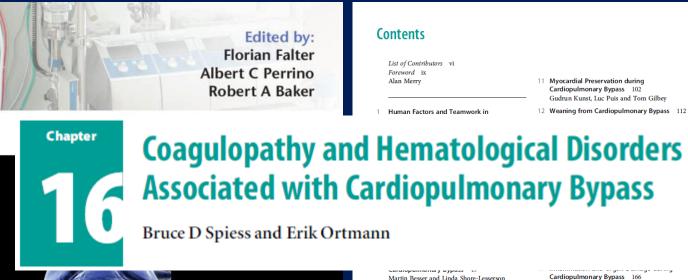
Contents

List of Contributors vi Foreword ix

Alan Merry

- Human Factors and Teamwork in Cardiac Surgery 1 Lindsay Wetzel, David Fitzgerald, Thoralf M Sundt and James H Abernathy III
- Equipment for Cardiopulmonary Bypass 9 Simon Anderson and Amanda Crosby
- Monitoring during 3 Cardiopulmonary Bypass 25 Richard F Newland and Pascal Starinieri
- 4 Cardiopulmonary Bypass Circuit Setup and Safety Checks 34 Victoria Molyneux and Shahna Helmick
- 5 Priming Solutions for Cardiopulmonary Bypass Circuits 42 Filip De Somer and Robert Young
- 6 Anticoagulation for Cardiopulmonary Bypass 49 Martin Besser and Linda Shore-Lesserson
- 7 Conduct of Cardiopulmonary Bypass 57 Christiana Burt, Timothy A Dickinson, Narain Moorjani and Caitlin Blau
- 8 Minimal Invasive Extracorporeal Circulation 71 Kyriakos Anastasiadis, Polychronis Antonitsis, Helena Argiriadou and Apostolos Deliopoulos
- 9 Considerations for Operations Involving Deep Hypothermic Circulatory Arrest 80 Pingping Song and Joseph E Arrowsmith
- 10 Metabolic Management during Cardiopulmonary Bypass 92 Jonathan Brand and Edward M Darling

Index 205


11 Myocardial Preservation during Cardiopulmonary Bypass 102 Gudrun Kunst, Luc Puis and Tom Gilbey

- 12 Weaning from Cardiopulmonary Bypass 112 Joanne F Irons, Kenneth G Shann and Michael Poullis 13 Intraoperative Mechanical Circulatory
 - Support and Other Uses of Cardiopulmonary Bypass 123 Mark Buckland and Jessica Underwood
 - 14 Mechanical Circulatory Support 138 Jason M Ali, Ayyaz Ali and Yasir Abu-Omar
- 15 Cardiopulmonary Bypass for Pediatric Cardiac Surgery 150 Joseph J Sistino and Timothy J Jones
 - 16 Coagulopathy and Hematological Disorders Associated with Cardiopulmonary Bypass 156 Bruce D Spiess and Erik Ortmann
 - 17 Inflammation and Organ Damage during Cardiopulmonary Bypass 166 R Clive Landis and Sherif Assaad
 - 18 Neuromonitoring and Cerebral Morbidity Associated with Cardiopulmonary Bypass 175
 - Etienne J Couture, Stéphanie Jarry and André Y Denault
 - 19 Renal Morbidity Associated with Cardiopulmonary Bypass 184 Juan Pablo Domecq and Robert C Albright
 - 20 Common and Uncommon Disasters during Cardiopulmonary Bypass 194
 - Gregory M Janelle, Jane Ottens and Michael Franklin

V

아주대학교의료원 아주대학교의료원 30주년 AJOU UNIVERSITY MEDICAL CENTER Ajou University Medical Center

Reference

7

CAMBRIDGE

Medicine

Martin Besser and Linda Shore-Lesserson Conduct of Cardiopulmonary Bypass 57 Christiana Burt, Timothy A Dickinson, Narain

- Moorjani and Caitlin Blau 8 Minimal Invasive Extracorporeal Circulation 71 Kyriakos Anastasiadis, Polychronis Antonitsis, Helena Argiriadou and Apostolos
- Deliopoulos 9 Considerations for Operations Involving Deep Hypothermic Circulatory Arrest 80 Pingping Song and Joseph E Arrowsmith
- 10 Metabolic Management during Cardiopulmonary Bypass 92 Jonathan Brand and Edward M Darling

Index 205

18

R Clive Landis and Sherif Assaad

Cardiopulmonary Bypass 175

19 Renal Morbidity Associated with

Cardiopulmonary Bypass 184

Cardiopulmonary Bypass 194

Associated with

Y Denault

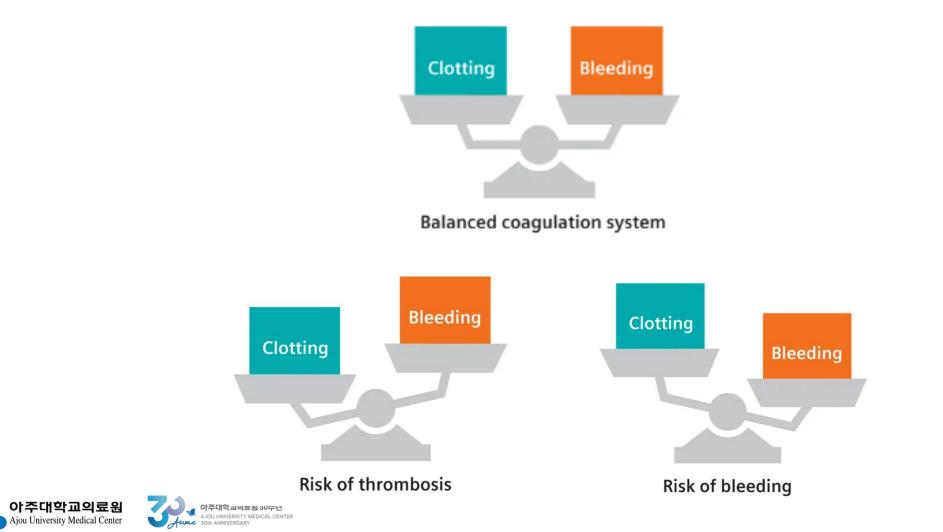
Neuromonitoring and Cerebral Morbidity

Etienne J Couture, Stéphanie Jarry and André

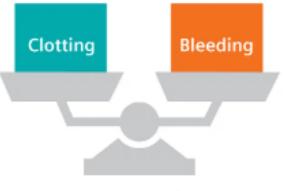
Juan Pablo Domecq and Robert C Albright

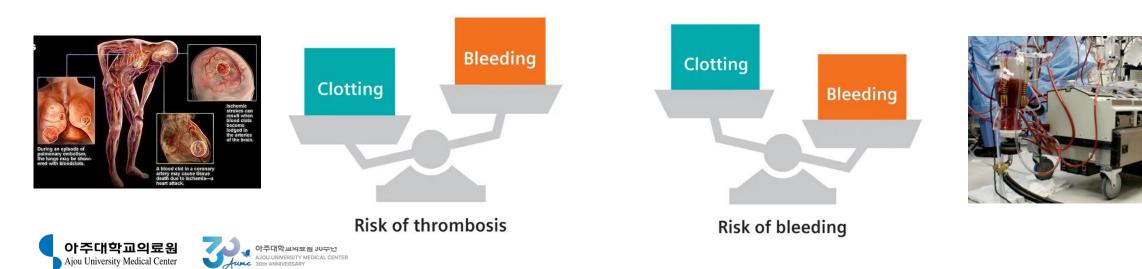
20 Common and Uncommon Disasters during

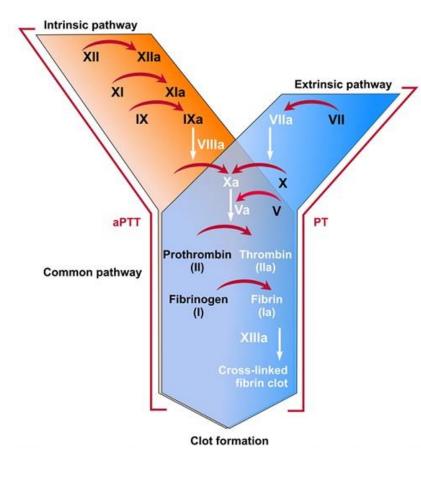
Gregory M Janelle, Jane Ottens and Michael Franklin

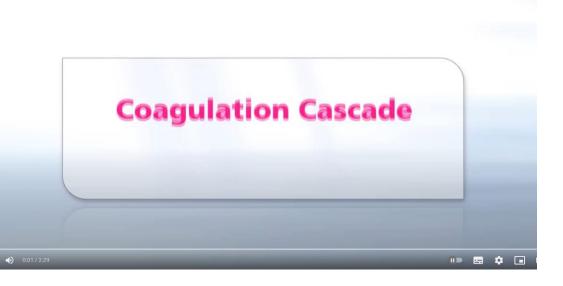

V

아주대학교의료원 Ajou University Medical Center









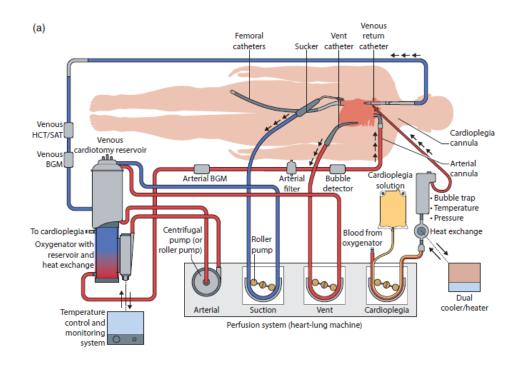
Balanced coagulation system

00 Activation of coagulation system

Thrombosis Adviser by Bayer AG. 2022 Oct.

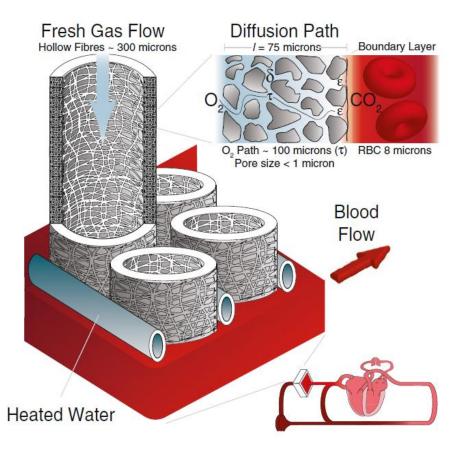
• The coagulation and inflammatory systems are so complex

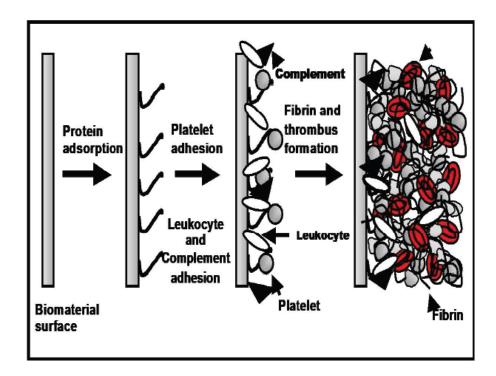
 Restoration of homeostatic balance cannot be achieved by giving blood products alone



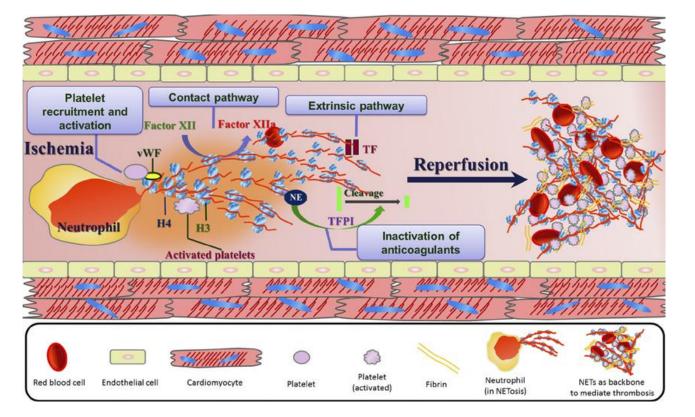
- Hemodilution
- Contact with artificial surfaces \rightarrow Activation of the coagulation system
- Platelet dysfunction, Fibrinolysis
- Effects of heparin and protamine
- Hypothermia, Hypocalcemia
- Ischemic reperfusion reaction \rightarrow Tissue factor from the endothelium

Hemodilution




- Adult CPB circuit leads to <u>20–30%</u> hemodilution
- Loss of activity for isolated clotting factors → <u>30–50%</u> of normal activity
- Reduce hemodilution
 - by using smaller CPB circuits
 - by retrograde autologous priming

Contact with artificial surfaces


01

Arteriolar microemboli may lead to localized ischemia and reperfusion

+ cardiotomy sucker

Am J Physiol Heart Circ Physiol. 2015 Mar 1;308(5):H500-9.

01

- Count decreases
 - Hemodilution and mechanical destruction
- Dysfunction
 - Hypothermia
 - Reversible with rewarming
- Platelet aggregation
 - Changes in morphology with increasing length of bypass

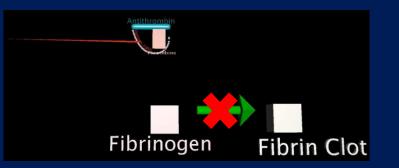
아주대학교의료원 Ajou University Medical Center Or주대학교의료원 30주년 Ajou University Medical Center

Function of Heparin

1. Faster antithrombin activity

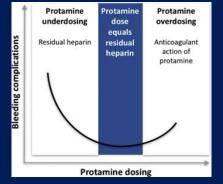
2. Enhance antithrombin's thrombin inactivation

Antithrombin



- Heparin do not "paralyze" the hemostatic system
 - Thrombin generation is ever present

• Heparin combined with antithrombin blocks the formation of fibrin.



- Thrombin triggers fibrinolysis
 - Lead to the breakdown of clots
 - Fibrin degradation products (particularly D-dimers) further impair fibrin polymerization

- Residual heparin can cause bleeding after reversed with protamine
- Non-heparin-bound protamine has anticoagulant effects

Br J Anaesth. 2018 May;120(5):914-927

• Heparin rebound might occur by redistribution from tissue or cell surfaces even hours after initial reversal.

Role of Preoperative Medication in Coagulopathy

- Genetic Factors
- Anti-platelet Agents
- Vitamin K Antagonists
- Novel Oral Anticoagulants

- **<u>Angina patient</u>** are more hypercoagulable than the general population
- <u>Blood group O patients</u> have more bleeding, transfusion and postoperative chest tube output than those with groups A, B or AB
- Anti-platelet (P2Y12) agents and aspirin have a significant proportion of non-responders

02

Role of Preoperative Medication in Coagulopathy

Anti-platelet agent

	Plasma half-life	Time to effect offset	Reversal agent available
Aspirin	15–30 minutes	7–10 days	no
Clopidogrel	8 hours	7–10 days	no
Prasugrel	7 hours	7–10 days	no
Ticagrelor	7 hours	5 days	yes (PB2452, in clinical stage trials)
Abciximab	10–15 minutes	12 hours	no
Eptifibatide	2.5 hours	2–4 hours	no
Tirofiban	2 hours	2.5 hours	no

• Pre-opeative dual anti-platelet agent

- *Meta-analysis* including <u>54</u> studies
 - Risk of re-exploration for bleeding 2.5-fold
 - without decreasing myocardial infarction
- *Meta-analysis* comprising of <u>30</u> studies
 - Mortality increased 47%
 - Bleeding and excessive use of allogeneic blood products.

• No "safe" INR elevation for bleeding risk (correct the INR close to 1.0)

- Reverse warfarin
 - administer 4 factor prothrombin complex concentrate (4FPCC)

Reversal Agent Type		Coagulation Factors
Profilnine SD, Bebulin	Unactivated PCC, 3-factor	II, IX, X
Kcentra	Unactivated PCC, 4-factor	II, VII, IX, X
FEIBA NF	Activated PCC, 4-factor	II, VII, IX, X

- Superior to FFP in restoring a normal INR
 - Co-administer Vit. K hepatic synthesis of Vit. K dependent coagulation factors

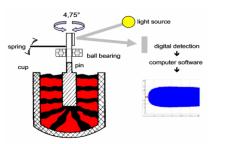
아주대학교의료원 Ajou University Medical Center

• Block the final common pathway

- Reverse NOAC (Rivaroxaban, Apixaban and dabigatran)
 - **<u>FFP</u>** (with huge volume to overcome the effects of these drugs)
 - And exanet- α and idarucizumab
 - Fully reverse effect of NOAC
 - Very expensive
 - 4FPCC appears to at least partially reverse NOACs

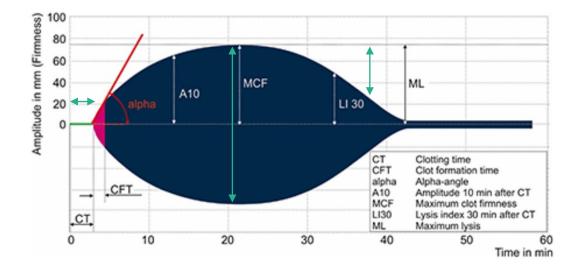
• Standard laboratory tests (SLT)

• Viscoelastic tests (VET)

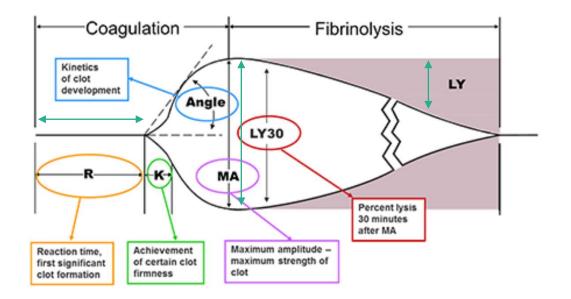

- Platelet count, fibrinogen levels, aPTT or PT
- Abnormal result cannot not differentiate between factor deficiency and residual heparin effect
- Too long (30–90min) to guide clinical decisions

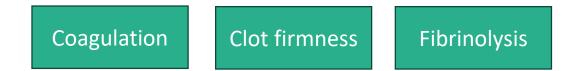
Viscoelastic tests (VET)

- ROTEM[™], TEG[™], ClotPro[™], TEG6s[™], Quantra[™]
- Result times of around 20 minutes

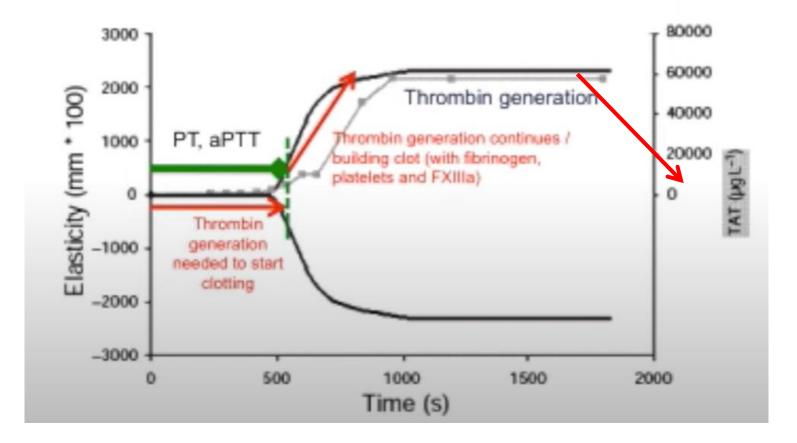

• Results

- Clotting time (integrity of clotting factors),
- Total clot firmness
- Fibrinolysis (lysis index)

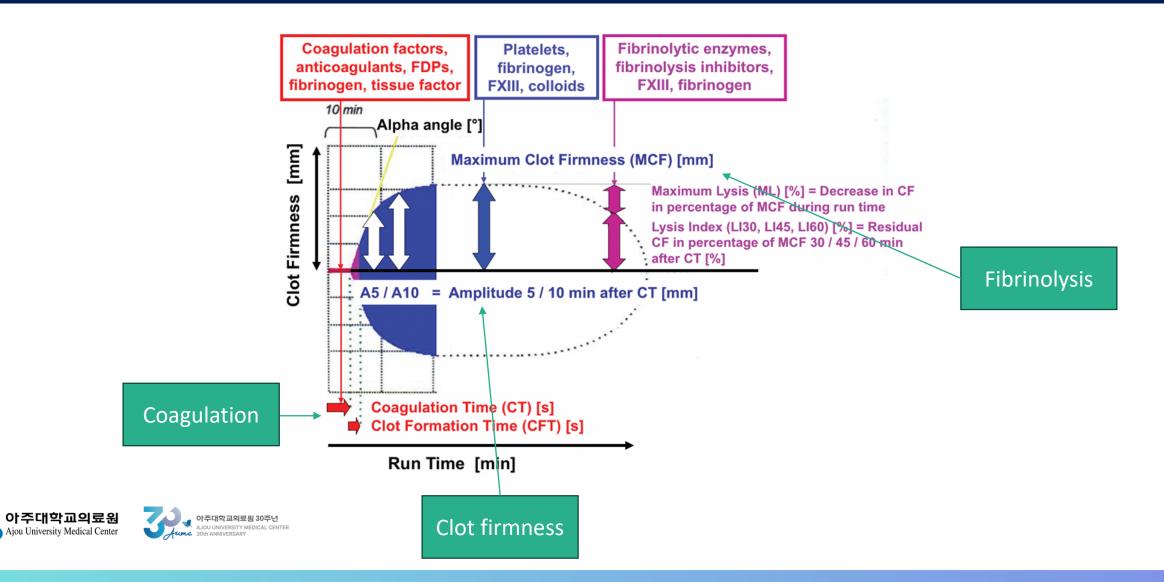



Viscoelastic tests (VET)

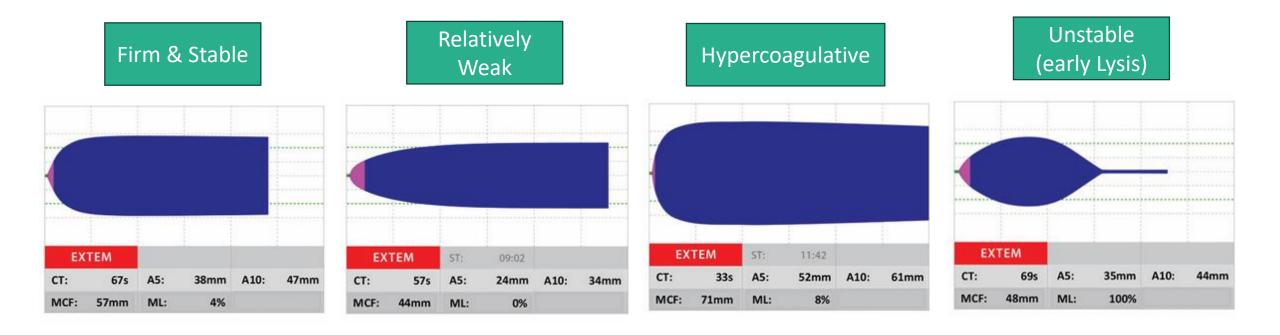
ROTEM™


TEG™

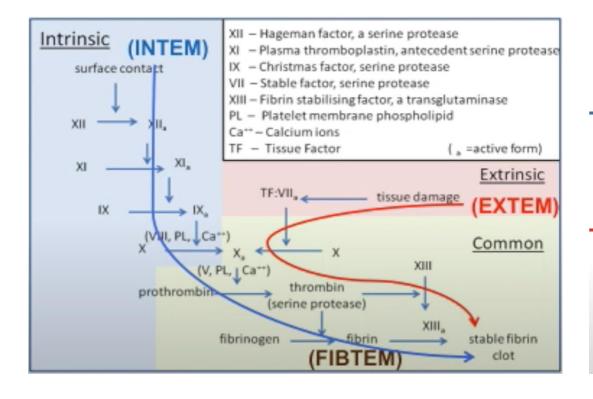
Standard laboratory tests (SLT) vs Viscoelastic tests (VET)



03



Viscoelastic tests (VET)

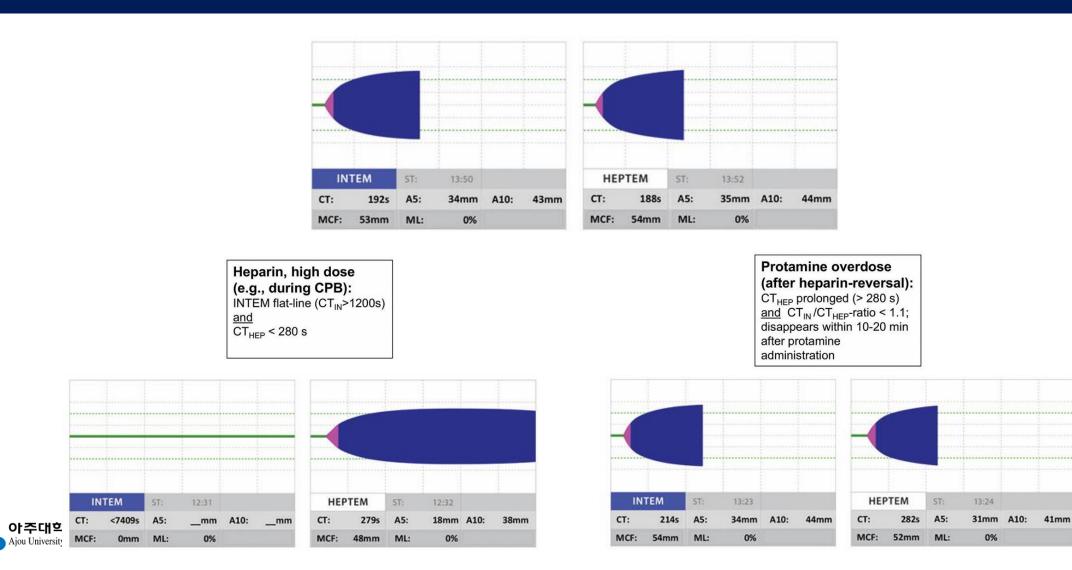

Viscoelastic tests (VET)

Viscoelastic tests (VET)

ROTEM[®] Thromboelastometry - Assays

INTEM - Intrinsic activation (via Ellagic Acid)

HEPTEM – adding Heparinase removes heparin from sample

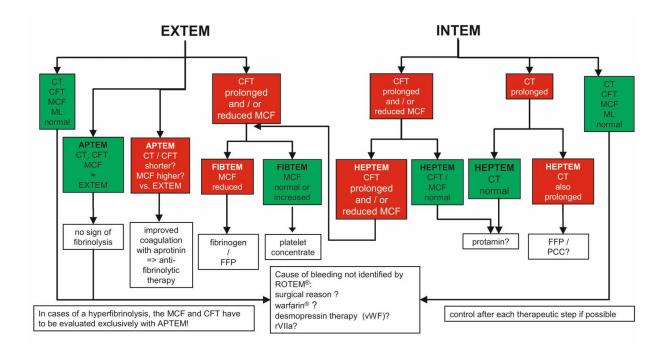

EXTEM – Extrinsic activation (via Tissue Factor)

FIBTEM – adds Cytochalasin D to inhibit platelet contribution

APTEM – adds aprotinin to inhibit hyperfibrinolysis

아주대학교의료원 Ajou University Medical Center

Viscoelastic tests (VET) (Examples)



13:24

0%

Viscoelastic tests (VET)

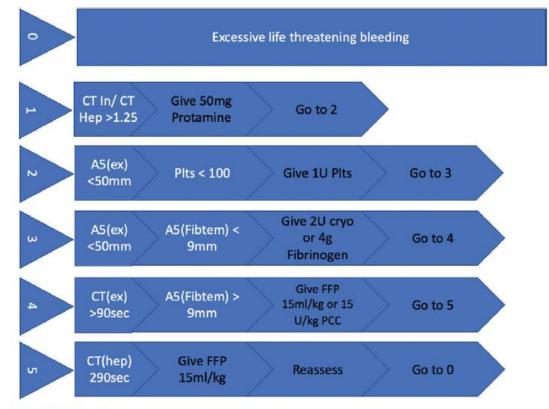
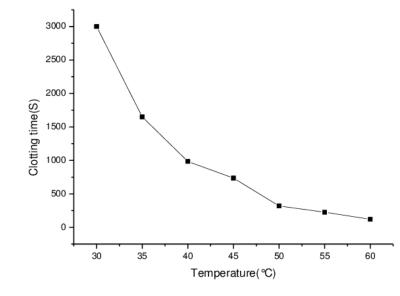


Figure 16.2 Typical ROTEM based algorithm for managing post-CPB bleeding with POC tests.

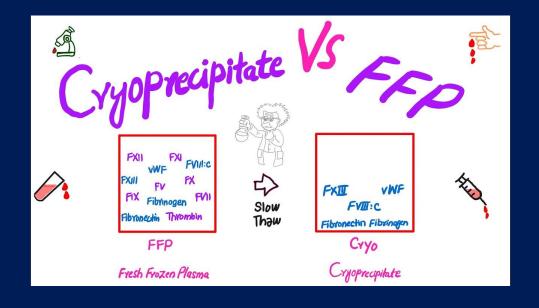

Therapeutic Interventions and Management of Bleeding Patients

- Temperature control
- Transfusion (Platelet, FFP and Cryoprecipitate)
- Factor concentrates
- 1-desamino-8-Darginine-vasopressin (DDAVP)
- Antifibrinolytic agents
- Avoid hemodilution

Therapeutic Interventions and Management of Bleeding Patients Temperature

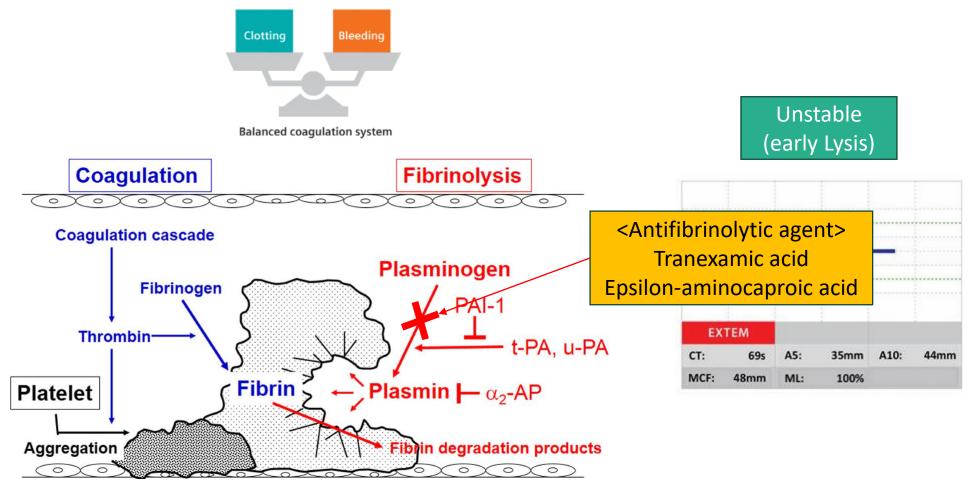
- Temperature control is of utmost importance as blood does not coagulate <u>below 30–32 °C.</u>
- Not the central core temperature but wound temperature.

Therapeutic Interventions and Management of Bleeding Patients Platelet


- Most affected coagulation system affected by CPB
- **<u>Platelet count</u>** currently provides the best guidance for transfusion.
- Lower than 50.000 and 100.000.
- Large proportion of packed platelets are dysfunctional, dying or apoptotic and can act as *prothrombotic microparticles*.
- Large concentrations of cytokines and can be a major risk for septic /bacterial transfusions (1/2000)

Therapeutic Interventions and Management of Bleeding Patients

FFP and cryoprecipitate



- <u>FFP</u> contains all the protein coagulants found in circulating plasma at normal levels
- FFP has been processed at 1–6°C to produce <u>cryoprecipitate</u>
- At least <u>15 ml/kg</u> of FFP (ex.60kgx15 = 900ml) are necessary to achieve a meaningful rise of coagulation factors

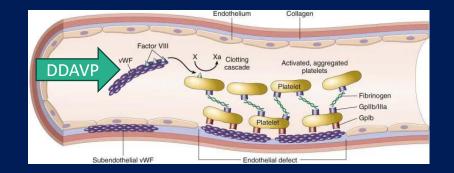
04

Therapeutic Interventions and Management of Bleeding Patients

Antifibrinolytic Agents

아주대학교의료원 Ajou University Medical Center

- Blocking antifibrinolytic activity has been shown to <u>reduce postoperative blood loss</u> in cardiac surgical patients.
- The *prophylactic administration of antifibrinolytic agents* has become a standard practice and is recommended in current guidelines.
- *High doses of TXA* have been linked to an increased incidence of *seizures*.
- Lower dose regimens



Therapeutic Interventions and Management of Bleeding Patients Others

Reversal Agent Type		Coagulation Factors
Profilnine SD, Bebulin	Unactivated PCC, 3-factor	II, IX, X
Kcentra	Unactivated PCC, 4-factor	II, VII, IX, X
Feiba NF	EIBA NF Activated PCC, 4-factor	

- Prothrombin complex concentrate (PCC) and fibrinogen concentrate
- Modern 4FPCCs contain the <u>25-fold</u> <u>concentration</u> of pro-coagulant proteins compared to <u>FFP</u>.

- Synthetic analogue of vasopressin
- enhance platelet function through the release of vWF and multimeric building blocks of vWF

- The coagulation and inflammatory systems are so complex
- Restoration of homeostatic balance cannot be achieved by giving blood products alone

THINK!

감사합니다.

2024.06.01 아주대학교의료원 심장혈관흉부외과 박수진

아주대학교의료원 Ajou University Medical Center

31976

70 30745

arah anda anda arah arah duan mi

아주대학교의료원 30주년 AJOU UNIVERSITY MEDICAL CENTER 30th ANNIVERSARY