Left sided atrioventricular valve outcome after the two-patch repair of complete atrioventricular septal defect

Department of pediatric cardiac surgery Saitama Medical University International Medical Center Takaaki Suzuki , Akinori Hirano, Ryusuke Hosoda, Yuji Fuchigami, Takaya Hoashi

Background

- Left sided atrioventricular valve (LAVV) regurgitation (LAVVR) is a serious complication after the biventricular repair for complete atrioventricular septal defect (CAVSD).
- Several risk factors for adverse LAVV outcomes were reported, including small left mural leaflet, preoperative significant regurgitation, chromosome abnormality, and previous pulmonary artery banding (PAB) for staged repair.
- Once after LAVVR occurred, it is essential to avoid prosthetic valve replacement for better quality of life.

Purpose

To investigate LAVV outcome after 2 patch repair of CAVSD.

Patients

 Patients with CAVSD who underwent biventricular repair at our center: n = 55

(Dec./1998-Oct./2022)

Patient characteristics

Female	27 (49.1%)	Associated lesions		
BW < 2.5kg	23 (43.4%)	PLSVC	11	(20.8%)
Prematurity	25 (47.2%)	TOF	5	(9.1%)
Age at Op. (months)	5.5 (3.4-9.1)	CoA	2	(3.6%)
Weight at Op.	4.6 (3.9-5.9)	LAVVR > mild	9	(16.7%)
Previous PAB	20 (36.4%)	Procedure		
Rastelli A	35 (64.8%)	Complete cleft closure	42	(76.4%)
В	0	CPB time	172	(142-230)
С	19 (35.2%)	AXC time	124	(98-154)
Down syndrome	42 (76.4%)			
Left atrial isomerism	2 (3.6%)			

Data were represented as number (%) or median (interquartile rage)

Study method

- Retrospective, single institutional cohort study
- IRB approved No. 2023-078 (04/10/2023)
- Endpoint
 - Primary: Mortality, Reoperation, LAVV reoperation, \geq moderate LAVVR
 - Secondary: LAVV prognosis (avoidance of LAVV replacement)
- Statistical analysis: Kaplan-Meier, Cox proportional hazard model
- Follow-up period in survivors: <u>11.0 years</u> (6.2-15.2, max 24.8)
- ➢ Follow-up rate: 96.4%

Study method

- Possible risk factors for LAVV reoperation, post-operative moderate LAVVR
 - 1. Rastelli A (classification)
 - 2. Down syndrome
 - 3. Immaturity (GA 37wks)
 - 4. LBWI (<2500g)
 - 5. PLSVC
 - 6. TOF
 - 7. Pre-operative LAVVR > mild
 - 8. Early surgical era (-2010)
 - 9. PAB (staged repair)
 - 10. Complete cleft closure

Two Patch closure of AVSD3mo 4.2kg Rastelli type A

Results

Overall survival

96.4%@ 5yrs 96.4%@10yrs 96.4%@15yrs 96.4%@20yrs

Mortality after discharge

- 2 late non-cardiac deaths
- Case 1 (3 months after CAVSD repair)

Hypovolemic shock, Adenovirus enterocolitis infection

• Case 2 (4 months after CAVSD repair)

Shock, strangulation ileus, after the repair of duodenal atresia

Freedom from reoperation rate

80.7%@ 5yrs 72.8%@10yrs 69.4%@15yrs

Reoperations: n = 15 pats

- For LAVV
- For RAVV
- Residual VSD
- LVOTO
- AR
- Permanent PMI

Freedom from reoperation for LAVV rate

84.8%@ 5yrs77.0%@10yrs73.5%@15yrs

Risk factor analysis for LAVV reoperation

Variables	р	OR	95%CI
Pre LAVVR > mild	0.21	2.37	0.62-9.00
PLSVC	0.23	2.10	0.63-6.97
BW < 2.5kg	0.35	1.76	0.54-5.76
Complete cleft closure	0.49	0.65	0.20-2.17
Rastelli A	0.52	0.68	0.21-2.22
Early surgical era (-2010)	0.78	0.85	0.27-2.70
Previous PAB	0.81	0.86	0.26-2.86
Prematurity	0.83	0.87	0.23-3.27
TOF	0.88	0.86	0.11-6.65
Down syndrome	0.91	0.93	0.25-3.42

Reoperation for LAVV

Patient	2 nd operation procedure	3 rd operation
1	Total cleft closure	
2	Total cleft closure, commissuroplasty	
3	Total cleft closure, commissuroplasty	
4	Tip of cleft closure, commissuroplasty	
5	Tip and bottom of cleft closure	
6	Closure of tone cleft and PBL	
7	Tone cleft <u>patch augmentation</u> , commissuroplasty	Replacement (for LAVVS, PH)
8	Total closure of tone cleft, commissuroplasty	
9	Replacement (for LAVVS, PH)	
10	ABL patch augmentation, bottom of cleft closure	Replacement (for LAVVS, PH)
11	LLL patch augmentation	Replacement (for LAVVS, PH)
12	Closure of tip and tone cleft, commissuroplasy	

Freedom from LAVV replacement

94.0%@ 5yrs 91.1%@10yrs 91.1%@15yrs 91.1%@20yrs

Freedom from mod. LAVVR rate

67.4%@ 5yrs 58.4%@10yrs 58.4%@15yrs

Risk factor analysis for moderate LAVVR

Variables	р	OR	95%CI
Complete cleft closure without dehiscence	0.012	0.35	0.15-0.79
PLSVC	0.13	2.07	0.80-5.35
Preoperative LAVVR > mild	0.29	1.81	0.60-5.46
Down syndrome	0.32	1.87	0.55-6.36
Rastelli A	0.50	1.39	0.53-3.62
TOF	0.57	1.43	0.42-4.85
BW < 2.5kg	0.80	1.12	0.46-2.70
Early surgical era (-2010)	0.86	1.21	0.52-2.86
Prematurity	0.89	0.93	0.36-2.43
Previous PAB	0.90	0.94	0.38-2.34

Freedom from mod. LAVVR rate

Summary

- 1. Good long-term prognosis after 2 patch repair of CAVSD was observed.
- 2. Surgical complete atrioventricular block had never been documented.
- 3. Incomplete LAVV cleft closure (open, partially closed or dehiscence of completely closed cleft) was a risk factor for post-operative moderate LAVVR.
- 4. Risk factor for LAVV reoperation was not identified.
- 5. LAVV stenosis must be prevented at LAVV repair, because prosthetic replacement is unavoidable once after LAVV stenosis occurred.
- 6. Although leaflet patch augmentation was usually applied for LAVVR from other than cleft closure, which resulted in later prosthetic replacement.

Conclusion

- By proper selection of strategy (primary vs staged), prognostic outcome after the biventricular repair for CAVSD was good.
- Significant LAVVR was observed in about a half of patients late after the biventricular repair for CAVSD.
- All known variables, such as significant preoperative LAVVR, previous PAB, Down syndrome, or small BW were not identified as risk factors for postoperative significant LAVVR, excepting for incomplete cleft closure.
- LAVV replacement could not be avoided once after LAVV stenosis caused pulmonary hypertension.