

ECMO & Rapid Response System

초음파검사 기록지의 활용

Dong Jung Kim M.D., Ph.D.

Department of Thoracic and Cardiovascular Surgery

Ultrasonographic report : ECMO

Ultrasonographic report for ECMO 대한심장형관종부	·외카학회 조음파위원회	6, LV thrombi □ yes □ no
Height: Weight: BS. 행압: mmHg 액박: /min 경 진단명: 김사 시행목적: 1. LV function - Visual estimated EP normal (>50%) moderate dysfunction (30~50%) severe dysfunction (30~50%) severe dysfunction (30~50%) severe dysfunction (30%) - Measured EF by M-mode: % 2. Regional wall motion normal apical mid basal apical mid basal poster 3. Valve function normal	사원시: / /	 no 7. Pericardial effusion yes minimal amount (<1cm) moderate amount (1~2cm) large amount (2 2cm) 8. Cannula location SVC RA IVC other 9. other findings
abnormal MR MS AR AS TR TS PR PS		반독의: 의료기관명: Conclusion:
4. Aostic valve opening yes no 5. Spontaneous echo contrast(SEC) yes no		

Ultrasonographic report : RRT

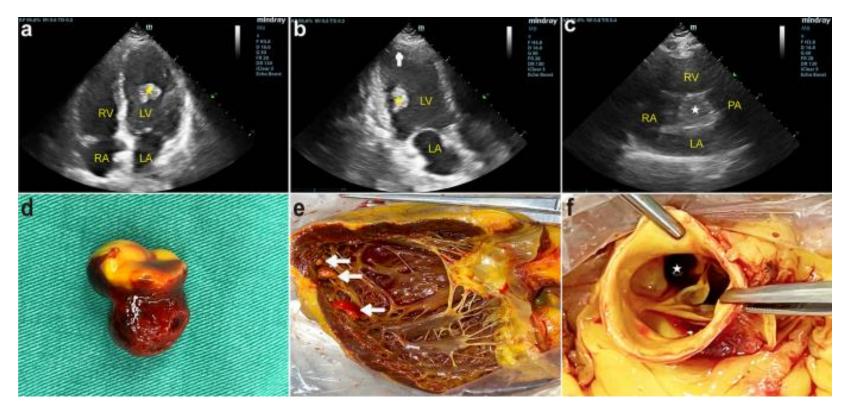
Ultrasonographic report for rapid response system/medical alert team

대한심장혈관흥부외과학회 초음파위원회

		대한심장혈관흥부외과학회 초음파위원
ID:	Name:	sex/age: /
Height:	Weight:	BSA:
1. Chief complaint		
2. LV function		
 Visual estimated EF 		
normal (>50%)		
moderate dysfunctio	n (30~50%)	
severe dysfunction (<30%)	
3. Regional wall motion		
normal		
abnormal		
apical	🗆 mid	basal
anterior	septal	posterior lateral
4. Pericardial effusion		
yes		
minimal amo	ount (<1cm)	
moderate an	nount (1~2cm))
large amour	it (>2cm)	
🗆 no		
5. Lung and Pleura		
- Right		- Left
Lung sliding		Lung sliding
A-line		A-line
B-line		🗆 B-line
Pleural effusion		Pleural effusion
Alveolar consolidation		Alveolar consolidation
Lung point		Lung point
others		others
6. IVC diameter: cm		
7. other findings		

Ultrasonography for ECMO & RRT

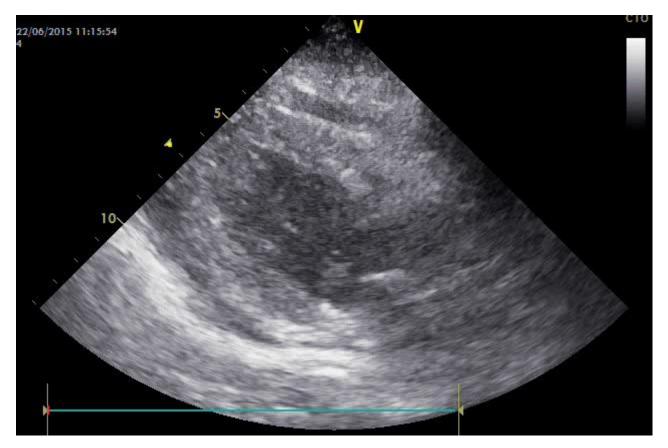
- Monitoring for ECMO patients
 - AV opening
 - SEC/LV thrombus
 - pericardial hematoma
 - cannula reposition
- Monitoring for RRT
 - IVC diameter : RA pressure, fluid responsiveness



VA−ECMO : Afterload ↑

- Not always problematic
- Ejection pressure needed for AV opening \uparrow
 - inadequate LV systolic pressure to open AV → loss of native ejection → arterial pulsation ↓ →
 retention of blood in LV & return of blood flow from bronchial circulation → LVEDV & LVEDP ↑

Multiple intracardiac thrombi



VA-ECMO, TTE, A4C, A3C, and PSAX views, LV thrombi (+)

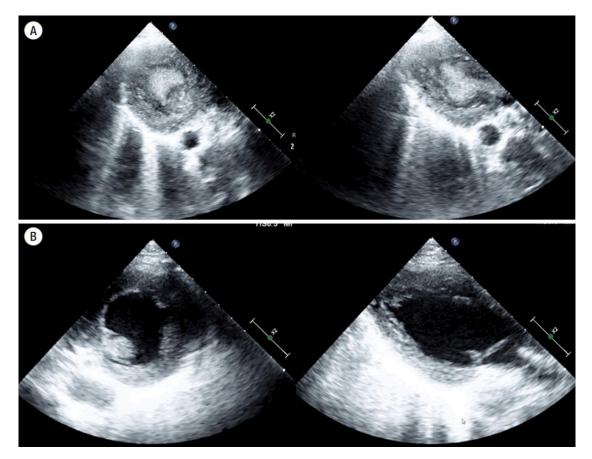
(Intensive Care Med 49,107–108,2023)

STEMI arrest \rightarrow ECPR \rightarrow VA-ECMO insertion

TTE, PLAX view, poor window

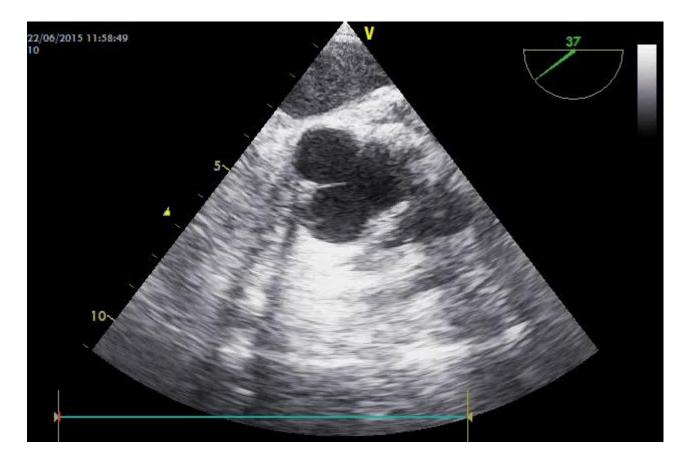
Case

No heparinization, TEE, ME LAX view, LA SEC, LVOT thrombus, AV opening (-)


SEC

- Spontaneous Echocardiographic Contrast
 - smoke-like echo phenomenon with a swirling pattern of blood flow
 - most often within the left atrium
 - caused by increased red blood cell aggregation during low-flow states
 - risk factor of thromboembolism
 - mistaken for a LV thrombus during VA-ECMO

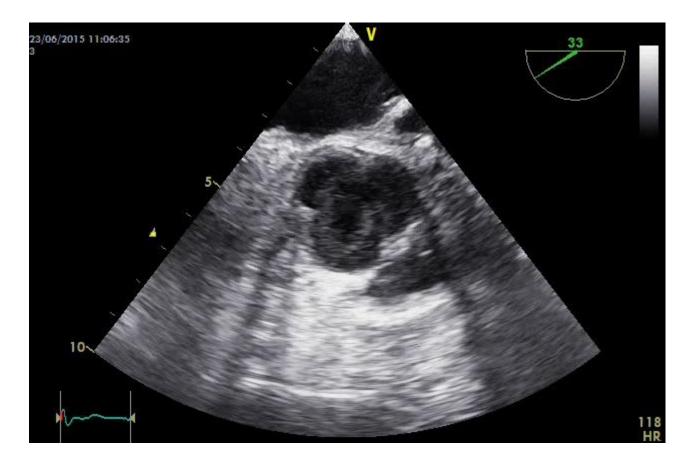
(J Am Coll Cardiol 1991;18:398-404)


SEC

VA–ECMO, TTE, PSAX & PLAX view, LV SEC, disappeared after volume replacement (Korean Journal of Critical Care Medicine 2017;32(4):372-375)

Case

No heparinization, TEE, ME AV SAX view, AV opening (-)


Case

No heparinization, TEE, ME AV SAX view, LVOT thrombus

Case

1day after heparinization, TEE, LVOT thrombus (-), AV opening (+)

VA−ECMO : Afterload ↑

LVEDP ↑, blood stagnation

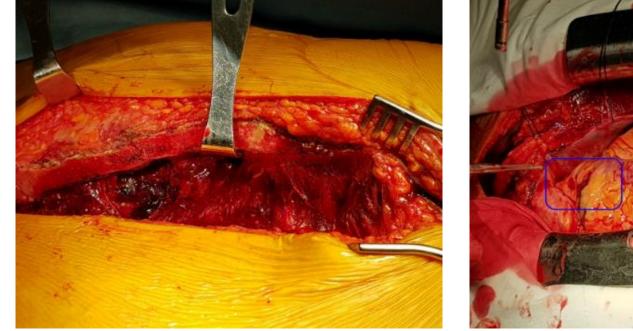
- No established study describing the influence on myocardial contractility in patients on VA–ECMO
- LV distension requiring decompression
 - No chance for recovery
 - Early detection : most important
 - pulmonary edema : too late
 - frequently echocardiography : check on AV opening

Pericardial hematoma

- Especially in ECPR cases
 - one of important causes of failure to be weaned from VA-ECMO

- Early diagnosis
 - prompt decision to perform pericardiocentesis or pericardiostomy

Case 1 : CT angiography



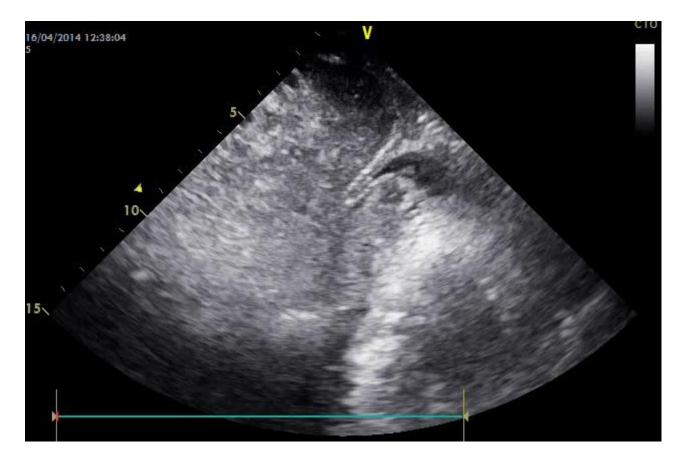


Hemopericardium with contrast enhancement, concerning cardiac tamponade

Case 1 : exploration

Sternal fracture

Bleeding focus : RCA branch

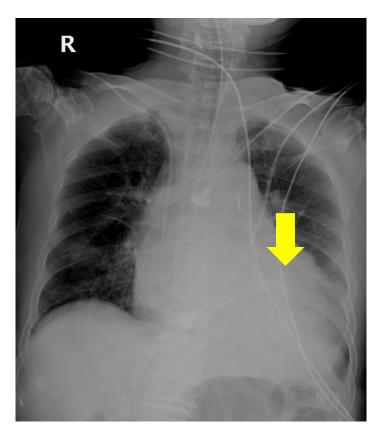


NSTEMI arrest \rightarrow ECPR \rightarrow VA-ECMO insertion

TTE, A4C view, pericardial hematoma, apex

TTE, subcostal view, pericardial hematoma, apex

TTE, A4C view, after pericardiostomy

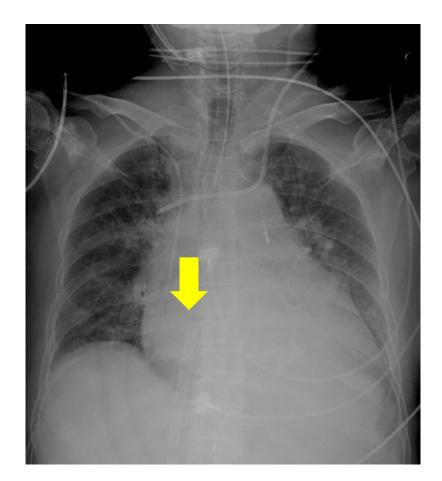


ECMO cannula malposition

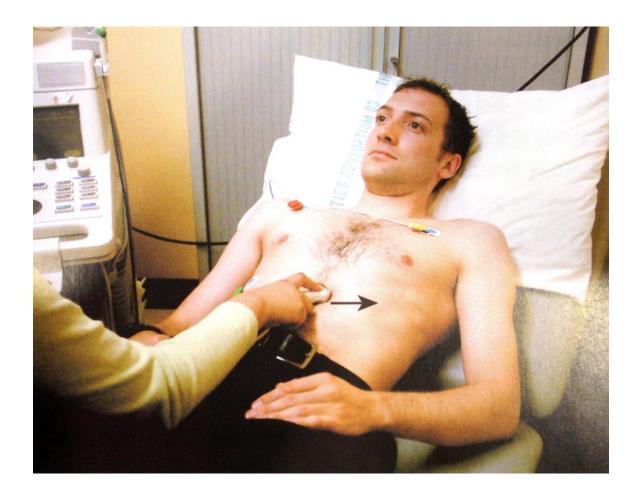
- VA–ECMO : venous cannula
- VV-ECMO : inflow cannula
- Blind insertion without fluoroscopy

STEMI with postinfarct VSD \rightarrow cardiogenic shock \rightarrow VA–ECMO insertion

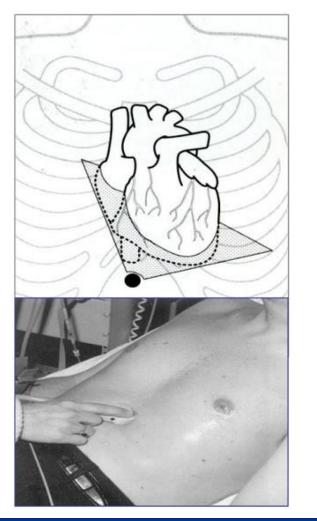
Venous cannula malposition

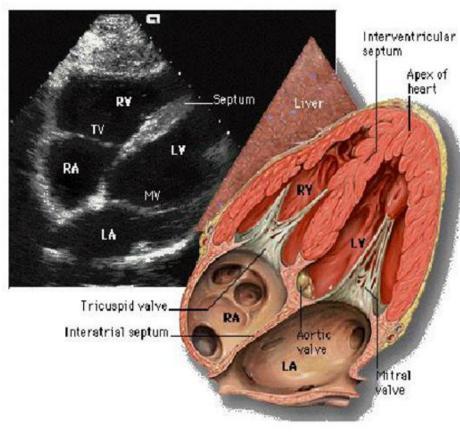


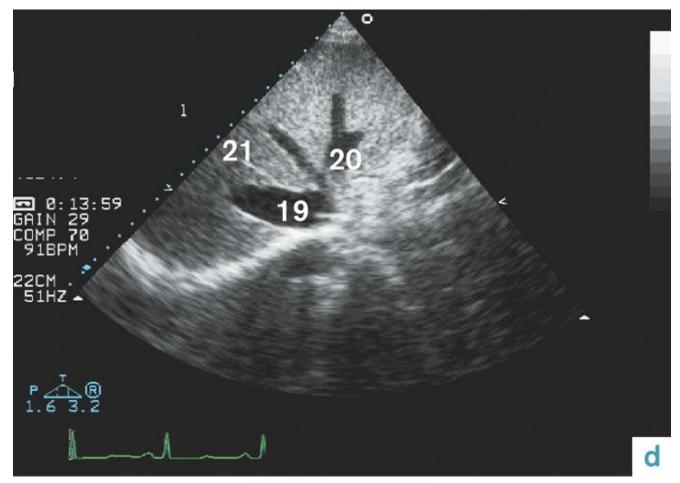
TTE, subcostal view, venous cannula reposition



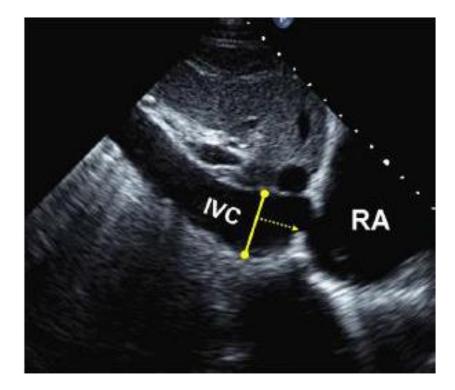
After cannula reposition




IVC : subcostal view


Subcostal view

Subcostal view

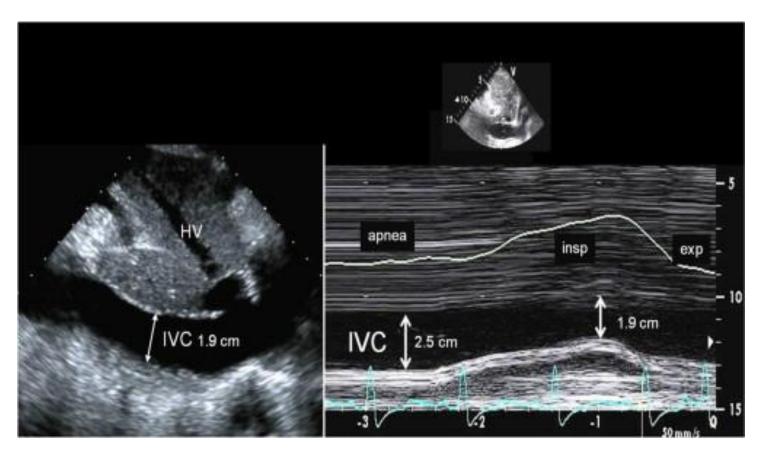


Ryding: Essential Echocardiography @ 2007 Elsevier Ltd.

IVC measurement

- Subcostal long axis view
- Approximately 0.5 to 3.0 cm proximal to ostium of RA, just proximal to the junction of hepatic veins
- Perpendicular to long axis of IVC at end-expiration

IVC : respiratory variation

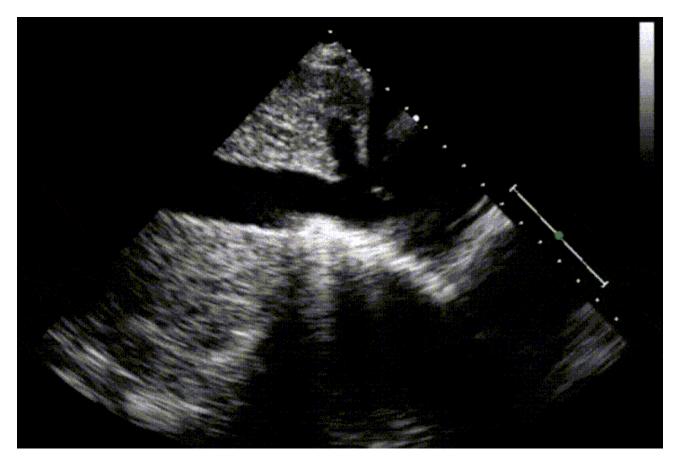


End-expiratory period

After brief sniff

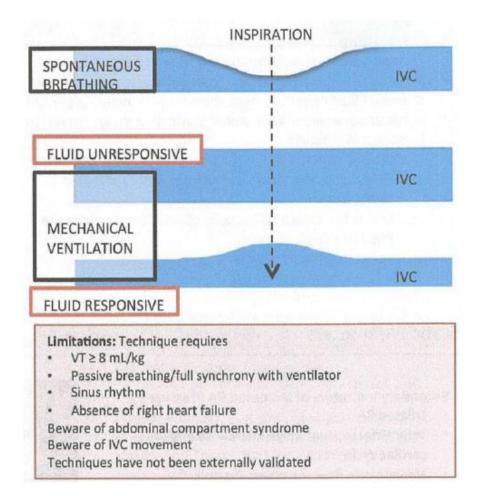
IVC measurement

TTE, subcostal long axis view, M-mode


IVC measurement

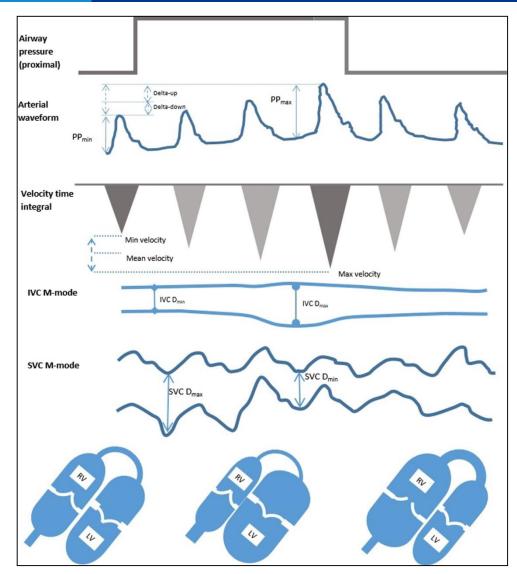
- RA pressure estimation
 - IVC < 2.1 cm that collapses > 50% with a sniff
 normal RA pressure of 3 mmHg
 - IVC > 2.1 cm that collapses < 50% with a sniff
 - high RA pressure of 15 mmHg
 - indeterminate cases
 - intermediate RA pressure of 8 mmHg (5-10 mmHg)
 - used in the determination of systolic PAP

(JAm Soc Echocardiogr 2015;28:1-39)


IVC plethora

Decrease in the IVC diameter by <50% during deep inspiration

IVC : fluid responsiveness


(JAm Soc Echocardiogr 2015;28:1-39)

Fluid responsiveness

- Prediction of effects of fluid before administration
 - >15% increase in SV in response to volume (500~1000ml/10min)
- Heart–lung interactions
 - respiratory-induced flow & pressure changes
- Inspiratory rise in intrathoracic pressure
 - transmural pressure across RV wall $\uparrow \rightarrow$ RV SV \downarrow
 - plethora within IVC and compression of SVC
 - venous return ↓, compression of pulmonary vasculature
 - Forcing blood into $LV \rightarrow LV SV \uparrow$ initially
 - ventricular interdependence
 - LV SV \downarrow a few heartbeats later

This effect is exaggerated if hypovolemia is present

(Echo Res Pract. 2016 Jun;3(2):G1-G12)

IVC : fluid responsiveness

Collapsibility index

Collapsibility IVC =
$$\left(\frac{\text{Dmax} - \text{Dmin}}{\left(\frac{\text{Dmax} + \text{Dmin}}{2}\right)}\right) X \ 100$$

- Volume response is predicted if collapsibility index is > 12%, in <u>spontaneously breathing patients</u>
- Distensibility index

Distensiblity IVC =
$$\left(\frac{\text{Dmax} - \text{Dmin}}{(Dmin)}\right) X 100$$

Volume response is predicted if distensibility index is > 18%, in mechanically ventilated patients

(Paediatr Anaesth. 2018;28(5):411-4)

IVC automated measurement

- Expert's ability 87% of time for minimal diameters and 92% for maximal diameters
- On average, the difference between IVC tool measurement and expert was < 0.6mm

(Venue Go R2 Technical Product Claims Document. DOC2199650.)

응급 · 중환자 초음파 검사

1. 나952 응급·중환자 초음파 검사는 다음의 요건을 모두 충족한 경우에 인정함.

- 다 음 -

가. 급여대상

쇼크 등 응급상황의 원인 감별, 급성 병변 판정, 치료 방침 결정, 처치·시술 시 보조(천자 및 카테터 삽입 시) 등 빠른 의사결정 및 정확하고 안전한 처치를 위해 초음파 검사가 필요한 환자

나. 산정요건

나952 응급·중환자 초음파는 초음파 장비가 설치된 중환자실이나 응급실*에서 의사가 직접 시행하고 검 사결과 등을 진료기록부에 기재하는 것을 원칙으로 함. 다만, 나952나 복합 표적 초음파는 응급상황이 발 생하여 해당 요양기관의 응급실이나 중환자실 이외 장소에서 검사한 경우에도 인정함. *「응급의료에 관한 법률」에 의한 응급의료기관의 응급실

다. 산정방법

1) 나952가 <mark>단일 표적 초음파</mark>의 검사부위는 ①두경부, ②흥부, ③심장, ④복부(비뇨기계 포함), ⑤남성생 식기 또는 여성생식기, ⑥사지로 분류되며, 검사범위에 따라 <mark>1부위 또는 2부위</mark> 이상으로 구분하여 산정함 (각 부위별 근골격, 혈관, 신경 등은 해당 부위에 포함). 2) 나952나 <mark>복합 표적 초음파</mark> 검사는 아래의 조건을 모두 충족한 궁우에 산정하며, 이를 충족하지 않는 경 우 상기 1)에 따라 나952가 단일 표적 초음파 검사를 산정함. - 아 래 -(가) 적응증 급성 흥부·복부·골반 외상, 심정지, 쇼크나 불안정한 혈류역학, 호흡·곤란, 흥통 (나) 실시인력 응급의학과 전문의(전공의), 외과계 전문의(외상외과 분야에 한함), 중환자실 전담의 (다) 검사범위 홍부, 심장, 복부골반을 모두 포함하여 검사해야 하며, 필요 시 두경부, 사지 등을 추가 검사한 경우

Summary

- Monitoring for ECMO patients
 - AV opening
 - SEC/LV thrombus
 - pericardial hematoma
 - cannula reposition

- Monitoring for RRT
 - IVC diameter : RA pressure, fluid responsiveness

Thank you for your attention !

Im