

## PhysiologyandPathologyofPleuralSpace- Including Management of Chest Bottles

Yong Ho Jeong, Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Seoul, the Republic of Korea Yonsei University College of Medicine



# Anatomy and Physiology of Pleura

### **Introduction of Pleural Space**

#### Definition

• The thin, fluid-filled gap between the visceral and parietal pleurae

#### Functions

- Facilitates lung expansion and contraction
- Reduces friction during breathing
- Maintains lung position within the thoracic cavity.

#### • Visceral Pleura

- Covers the surface of the lungs.
- Blood supply from bronchial arteries
- The visceral pleura is **devoid of somatic innervation**

#### Parietal Pleura

- Lines the inner surface of the thoracic cavity.
- Blood supply from systematic circulation
- The parietal pleura has a rich network of somatic, sympathetic, and parasympathetic innervation.
- Pleural cavity
  - Space between the visceral and parietal pleurae.
  - Visceral pleura and parietal pleura fuse at the hilum



Submesothelial Connective Tissue (Visceral Pleura)

Mesothelial Cells (Visceral Pleura)



**Elastic Layer** 

Submesothelial Connective Tissue

**Mesothelial Cells (Parietal Pleura)** 



Submesothelial Connective Tissue (Visceral Pleura)

**Mesothelial Cells (Visceral Pleura)** 

- Mesothelial Cells (Visceral Pleura)
  - The outermost layer of the visceral pleura
  - Consist of a single layer of mesothelial cells.
- Submesothelial Connective Tissue (Visceral Pleura)
  - Connective tissue beneath the mesothelial cells of the visceral pleura
  - Offer support and elasticity.



**Elastic Layer** 

**Submesothelial Connective Tissue** 

**Mesothelial Cells (Parietal Pleura)** 

- Mesothelial Cells (Parietal Pleura)
  - The outermost layer of the parietal pleura
  - Consist of a single layer of mesothelial cells.
- Submesothelial Connective Tissue
  - A layer of connective tissue beneath the mesothelial cells of the parietal pleura
  - Provide structural support



**Elastic Layer** 

**Submesothelial Connective Tissue** 

**Mesothelial Cells (Parietal Pleura)** 

- Elastic Layer
  - A layer rich in elastic fibers
  - Facilitates he flexibility and stretch of the pleura during respiration

### **Pleural Pressure**

#### Negative Pressure

• Normally, the pleural pressure is **slightly negative** compared to atmospheric pressure (-5 cm H2O at rest).

#### Importance

• Negative pleural pressure helps keep the lungs expanded and facilitates lung compliance.

### **Mechanism of Breathing**

#### Inspiration

- During inspiration, the **diaphragm and intercostal muscles contract**, expanding the thoracic cavity.
- Pleural Pressure Changes: **Pleural pressure becomes more negative**, causing the lungs to expand and air to flow into the alveoli.

#### • Expiration

• Relaxation of the diaphraom and intercostal muscles leads to a decrease in thoracic volume, causing expiration.

 Most of the fluid that accumulates in the pleural space is derived from the lung and is absorbed by the parietal pleura.

#### Composition

• A thin laver of fluid (about 10-20 mL) composed primarily of water, electrolytes, proteins, and lipids.

#### • Functions

• Lubricates the pleural surfaces. facilitates smooth lung movement during respiration, and helps maintain negative pressure within the pleural space.

#### • Exudate

- Occurs due to inflammation or **injury to the pleura**, leading to increased permeability of pleural surfaces or impaired lymphatic drainage.
- Transudate
  - Results from systemic factors that alter the **balance of oncotic and hydrostatic pressures**, typically without direct pleural disease.

- Light's Criteria
  - Pleural fluid is considered an exudate if one or more of the following are met
  - Pleural fluid protein/serum **protein ratio** > **0.5**
  - Pleural fluid LDH is more than two-thirds the upper limit of normal for serum LDH
  - Pleural fluid LDH/serum LDH ratio > 0.6

|                                         | Exudate                                                                       | Transudate                                                  |
|-----------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|
| Protein content                         | > 3.0 g/dL                                                                    | < 3.0 g/dL                                                  |
| Serum-to-pleural fluid<br>protein ratio | > 0.5                                                                         | < 0.5                                                       |
| Lactate dehydrogenase (LDH)<br>level    | > 200 IU/L or > 2/3 the upper<br>limit of normal serum LDH                    | < 200 IU/L or < 2/3 the upper<br>limit of normal serum LDH  |
| Serum-to-pleural fluid LDH<br>ratio     | > 0.6                                                                         | < 0.6                                                       |
| Glucose level                           | Often low                                                                     | Similar to serum glucose                                    |
| pH level                                | < 7.30                                                                        | Usually > 7.30                                              |
| Appearance                              | Often cloudy or bloody                                                        | Clear or straw-colored                                      |
| Common causes                           | Pneumonia, malignancy, tubercul<br>osis, pulmonary embolism, pancr<br>eatitis | Congestive heart failure, cirrhosi<br>s, nephrotic syndrome |

### **Disease of Pleura**

### **Diseases Affecting the Pleural Space**

#### Pneumothorax

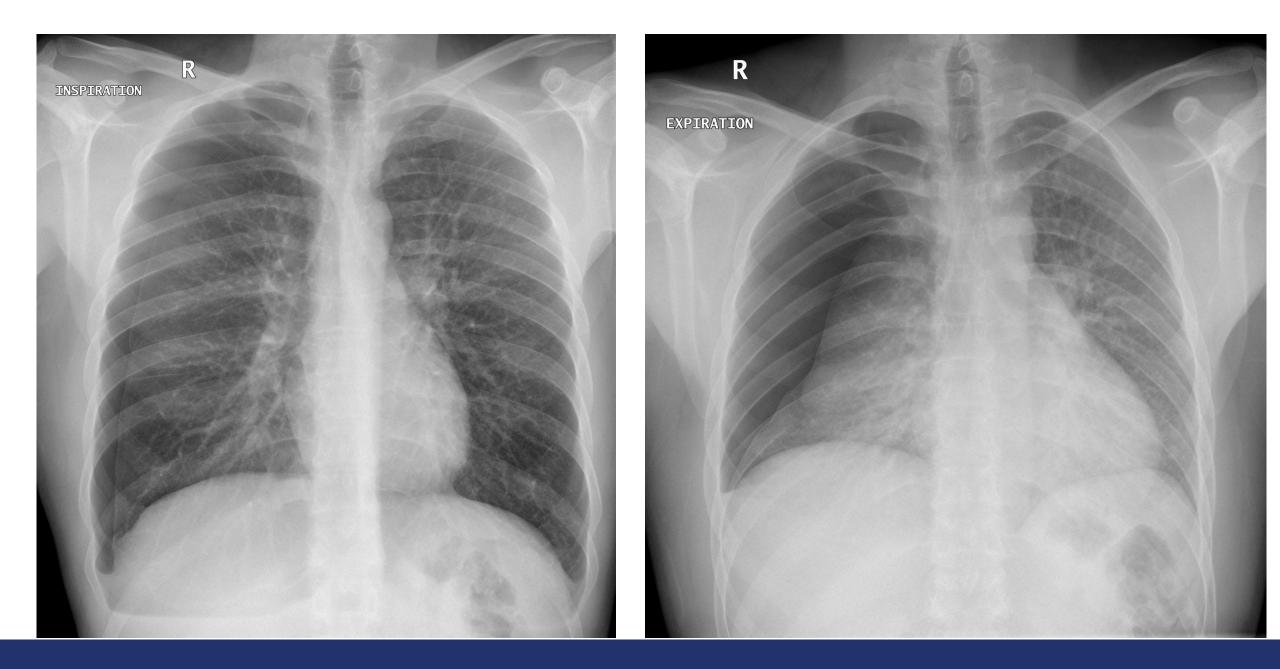
• Presence of air in the pleural space, leading to lung collapse

#### Pleural Effusion

• Accumulation of excess fluid in the pleural cavity, often due to inflammation or infection

#### • Empyema

• Presence of pus in the pleural space, usually caused by bacterial infection


#### Mesothelioma

• Cancer affecting the pleura, often associated with asbestos exposure.

- Definition
  - Pneumothorax is the presence of air in the pleural cavity causing the lung to collapse.
- Types
  - Spontaneous Pneumothorax
    - **Primary** : No underlying lung disease, often in tall, thin young males.
    - Secondary : Due to existing lung diseases (e.g. COPD, cystic fibrosis, or tuberculosis)
  - **Traumatic** Pneumothorax
    - Blunt or penetrating chest injury
    - Medical procedures like lung biopsies, central line placement

#### • Symptoms

- Sudden chest pain
- Shortness of breath
- Rapid heart rate
- Fatigue
- Cyanosis
- Diagnosis
  - Physical Examination : **Decreased breath sounds** on the affected side.
  - Imaging : Chest X-ray, CT scan, or ultrasound



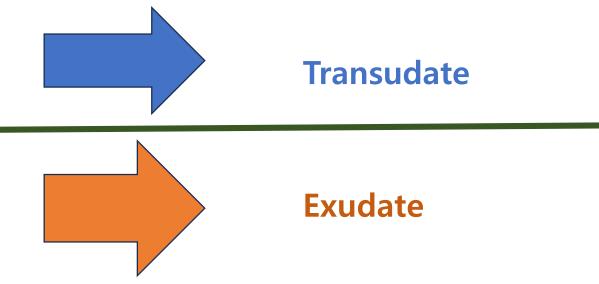
#### Treatment

- Small Pneumothorax : monitoring and oxygen therapy.
- Large or Symptomatic Pneumothorax : Needle aspiration or chest tube insertion
- Surgery
- Preventive Measures
  - Smoking cessation
  - Careful monitoring and management of underlying lung conditions.

### Indications of Surgery for Pneumothorax

- **Recurrent** Pneumothorax
- Persistent Air Leak
  - Continuous air leak for more than 5-7 days despite conservative treatments.
- Bilateral Pneumothorax
- **Occupational** or Lifestyle Considerations:
  - Individuals in high-risk professions (e.g., pilots, divers) may require surgery after a first episode to avoid recurrence during critical activities.

#### • Tension Pneumothorax:


• While typically an emergency managed with immediate decompression, surgery may follow to prevent recurrence and treat any underlying issues.

- Preventive Measures
  - Smoking cessation
  - Careful monitoring and management of underlying lung conditions.

- Definition
  - Accumulation of excess fluid between the layers of the pleura outside the lungs
- Types
  - Transudative Effusion
    - Caused by systemic factors
  - Exudative Effusion
    - Result of local factors

#### Causes

- Heart failure
- Liver cirrhosis
- Kidney disease
- Pneumonia
- Cancer
- Pulmonary embolism
- Tuberculosis



#### • Symptoms

- Shortness of breath
- Chest pain, especially during inhalation
- Cough
- Fever (if infection is present)
- Reduced breath sounds on affected side

#### •Diagnosis:

- Physical examination
- •Imaging: Chest X-ray, CT scan, ultrasound.
- •Thoracentesis: Procedure to remove and analyze pleural fluid.



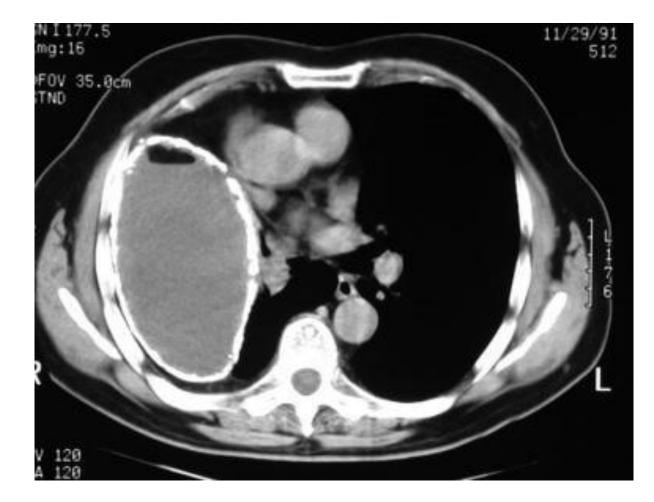
•Treatment:

- Underlying Cause : Treat the primary
- Thoracentesis : Therapeutic removal of fluid to relieve symptoms.
- Chest Tube Insertion
- Pleurodesis: Prevent recurrent effusions, often in cancer patients.
- **Surgery:** VATS for diagnostic or therapeutic purposes in complex cases.

- Definition
  - Accumulation of pus in the pleural cavity
- Causes
  - Usually a complication of pneumonia, thoracic surgery, trauma, or infection spreading from nearby structures.

#### Mechanism

- Bacterial infection leading to inflammation, pus formation, and fibrin deposition in the pleural space.
- Common Bacteria: Streptococcus pneumoniae, Staphylococcus aureus, and anaerobes.


#### • Symptoms

- Fever
- Chest pain
- Cough
- Shortness of breath

#### • Diagnosis

- Chest X-ray
- Chest CT
- Pleural fluid analysis





#### • Exudative Stage

- Inflammatory fluid accumulation without significant pus
- Thin, free-flowing fluid

#### • Fibrinopurulent Stage

- Pus and fibrin deposition, leading to loculated pleural effusions.
- Thicker fluid, formation of septations and loculations

#### • Organizing Stage

- Fibroblasts grow into the pleural fluid, forming a thick peel
- Characteristics: Encapsulation of the lung, restrictive lung movement.

- Medical treatment
  - Antibiotics
  - Pleural drainage
  - Fibrinolytics
- Indications for operation
  - Failure of Medical Management
  - Loculated Effusion: When fibrinolytics are ineffective.
  - Thickened Pleura (Organizing Stage): Preventing lung expansion.

#### Surgical treatment

- Video-Assisted Thoracoscopic Surgery (VATS)
  - Minimally invasive
  - Used in the fibrinopurulent stage
- Open Thoracotomy
  - More invasive
  - Required in the organizing stage for decortication
- Decortication: Removal of the fibrous layer covering the lung to allow re-expansion.

### Mesothelioma

#### Definition

- Mesothelioma is a rare, aggressive form of cancer that develops in the mesothelial cells lining the lungs, abdomen, or heart.
- Primary Site: Pleura (lining of the lungs) is the most common site
- Primary Cause: Asbestos exposure.
- **Mechanism**: Inhaled or ingested asbestos fibers become lodged in the mesothelium, causing inflammation and genetic mutations that lead to cancer.

### Mesothelioma

- Diagnosis
  - Imaging Tests
    - CT scan
    - MRI
    - PET scan
  - Biopsy
    - Needle biopsy
    - Thoracoscopy
  - Blood tests
    - Mesomark assay for soluble mesothelin-related peptides (SMRPs)

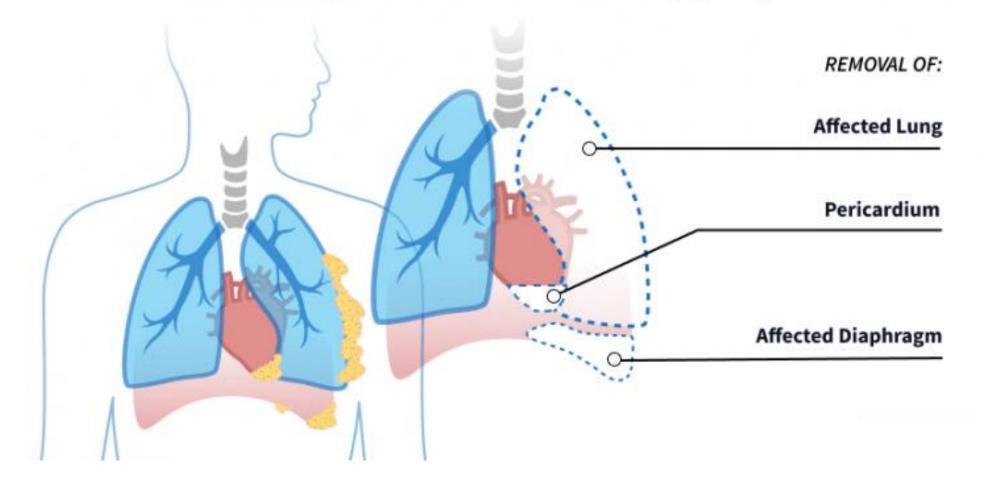
#### Mesothelioma

- Surgery
  - Pleurectomy/decortication (P/D)
  - Extrapleural pneumonectomy (EPP)
- Chemotherapy
  - Common agents: Pemetrexed and cisplatin.
- Radiation Therapy
  - Used to shrink tumors or relieve symptoms.
- Multimodal Therapy

## **Extrapleural Pneumonectomy**

#### • Removal of Pleura

• The parietal pleura and the visceral pleura are removed.


#### • Lung resection

• The affected lung is detached and removed.

#### Other structures

- The pericardium and the diaphragm are partially or completely removed if they are involved by the tumor.
- A synthetic or biological patch may be used to reconstruct the pericardium and the diaphragm.

#### Extrapleural Pneumonectomy (EEP)



# Chest Tube and Chest Bottle

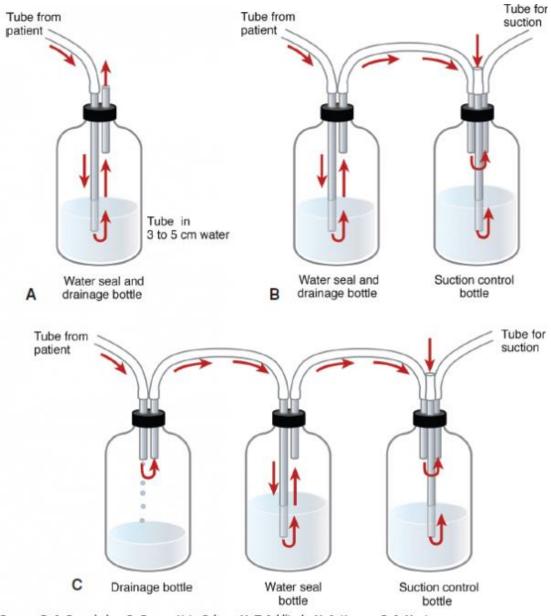
## **Chest Tube**

- Maintenance
  - Monitoring
    - Regular assessment of the **insertion site**, tube patency, and **the amount and nature of drainage**.
  - Suction
    - Often applied to help re-expand the lung

#### Preventing Complications

- Ensure the tube does not become kinked or dislodged.
- Prevent infection through regular dressing changes and sterile techniques.

## **Chest Tube Removal**


- Criteria for Removal
  - Resolution of the underlying issue
    - Confirmed by imaging
  - Drainage
    - Minimal drainage, typically less than 200 ml over 24 hours.
  - Air Leak
    - No air leak during a cough or Valsalva maneuver.
- Procedure for Removal
  - The tube is nulled out quickly while the patient performs a Valsalva maneuver to prevent air entry.
  - The site is then covered with an occlusive dressing.

- 1 bottle system
  - Collection
  - Water Seal
  - Air and Fluid
    - As the patient exhales or as the lung re-expands, air and fluid are expelled from the pleural space into the bottle.
  - Air Escape
    - Air bubbles through the water and exits through the vent tube
  - Fluid Collection

- 1 bottle system Advantages and Disadvantages
  - Advantages
    - Simplicity
    - Portability
  - Disadvantages
    - Limited Capacity
    - Lack of Suction Regulation
- Indications for Use
  - Simple Pneumothorax
  - Low-Volume Drainage

- 2-Bottle System
  - Components
    - Collection Bottle
    - Water Seal Bottle
  - Function:
    - **Drainage:** Fluid from the pleural space collects in the first bottle.
    - Water Seal: The second bottle allows air to escape but not return, ensuring a one-way flow out of the chest.

- 3-Bottle System
  - Components:
    - Collection Bottle
    - Water Seal Bottle
    - Suction Control Bottle
  - Function:
    - **Collection:** Similar to the 2-bottle system, fluid collects in the first bottle.
    - Water Seal: The second bottle serves the same function, preventing air from re-entering.
    - Suction Control: The third bottle contains water and controls the level of suction by the height of the water column, ensuring consistent and safe suction pressure.



Source: D. J. Sugarbaker, R. Bueno, Y. L. Colson, M. T. Jaklitsch, M. J. Krasna, S. J. Mentzer, M. Williams, A. Adams: *Adult Chest Surgery*, 2nd Edition: www.accesssurgery.com Copyright © McGraw-Hill Education. All rights reserved.



