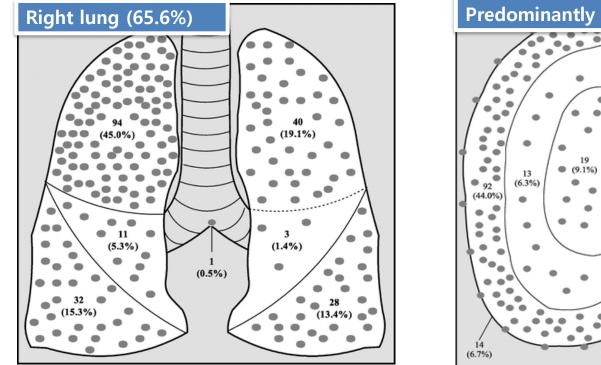
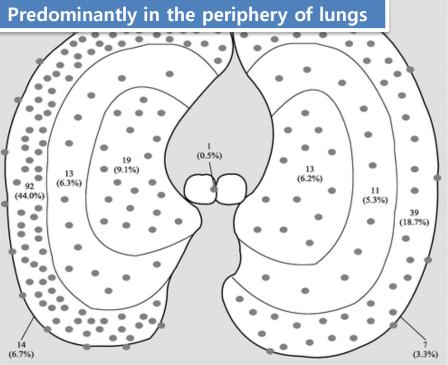
Robotic Bronchoscopy: A Review of Current Systems

분당서울대학교병원 호흡기내과 김연욱

- Emerging needs for approaching peripheral pulmonary lesions
- History of advanced image-guided bronchoscopy
- Robotic bronchoscopy: state-of-the-art


Incidence of Incidentally Detected Nodules


• Frequency of chest CT imaging and positive scans

Year	Total Members (N)	Chest CT Scans Performed (n)	Positive Chest CT Scans [n (% of Scans)]	Time at Risk for Scanning* <i>Person-Years</i>)	Chest CT Scans Performed [†] [<i>Rate per 1,000</i> <i>Person-Years (</i> 95% <i>CI)</i>]	Positive CT Scans [†] [Rate per 1,000 Person-Years (95% CI)]
2006	2,623,719	46,663	11,172 (23.9)	2,288,046	20.4 (20.2 –20.6)	4.9 (4.8–5.0)
2007	2,673,078	50,571	13,645 (27.0)	2,342,118	21.6 (21.4–21.8)	5.8 (5.7–5.9)
2008	2,672,351	55,264	15,171 (27.5)	2,369,685	23.3 (23.1–23.5)	6.4 (6.3–6.5)
2009	2,663,055	60,430	17,250 (28.5)	2,375,472	25.4 (25.2, 25.6)	7.3 (7.2–7.4)
2010	2,698,679	63,036	19,420 (30.8)	2,412,059	26.1 (25.9–26.3)	8.1 (7.9–8.2)
2011	2,822,145	68,411	20,346 (29.7)	2,540,580	26.9 (26.7–27.1)	8.0 (7.9–8.1)
2012	2,916,094	71,206	21,766 (30.6)	2,635,220	27.0 (26.8–27.2)	8.3 (8.2–8.4)
2006–2012 Total [‡]	19,069,121	415,581	118,770 (28.6)	16,963,179	24.5 (24.4–24.6)	7.0 (7.0–7.0)

Wide Implementation of Lung Cancer Screening

- Increasing early detection of peripheral lung cancer
- Distribution of lung nodules detected from the NELSON trial

	Peripheral or pleural-attached	Central or middle one-third		
Adenocarcinomas	82.2%	17.8%		
Squamous cell carcinomas	62.9%	37.1%		

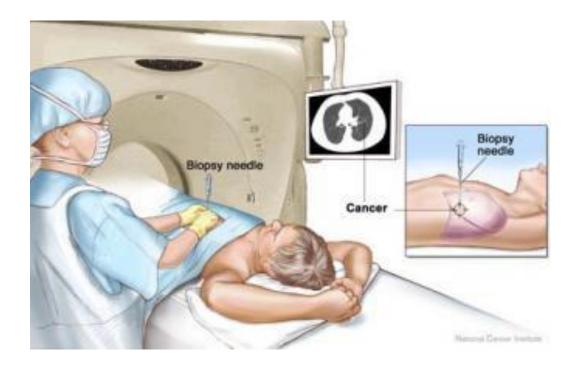
Diagnostic Tissue Sampling for Pulmonary Nodules

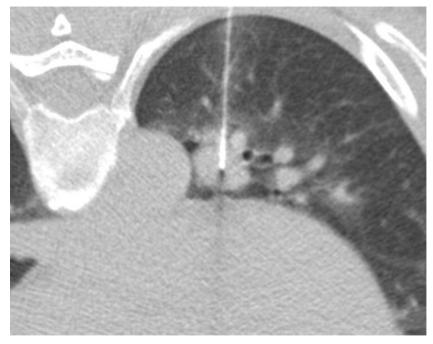
Nonsurgical biopsy

- Transthoracic needle biopsy
- Conventional bronchoscopy and EBUS -> Not optimal for peripheral nodules
- Advanced image-guided bronchoscopy

Surgical biopsy

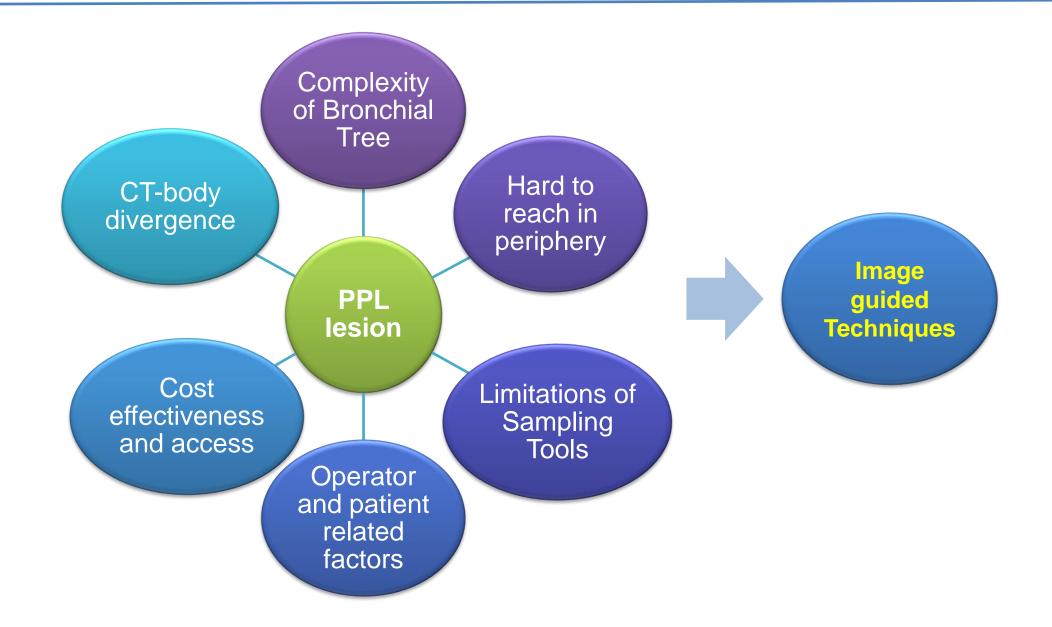
- Sublobar resection with VATS or RATS preferred

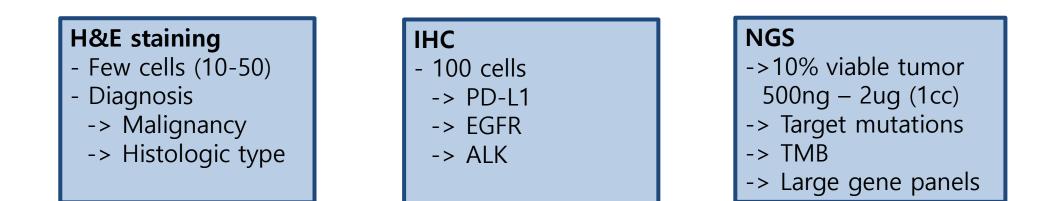

Sensitivity of flexible bronchoscopy for peripheral lung lesions


All Methods:		< 2 cn	n LESI	ON	> 2 cm LESION			ON	
First Author	Year	Ν	Pos	Neg	Sens	Ν	Pos	Neg	Sens
Gasparini ¹¹⁰	1995	195	82	113	42	300	169	131	56
Hattori ⁷⁶	1971	17	13	4	76	182	150	32	82
Baaklini ⁸⁸	2000	16	4	12	25	135	93	42	69
Wallace ¹²²	1982	65	3	62	5	78	24	54	31
Bandoh ¹³⁰	2003	25	8	17	32	72	50	22	69
Radke ¹⁰⁶	1979	21	6	15	29	76	49	27	64
Naidich ¹²¹	1988	15	4	11	27	46	26	20	57
Trkanjec ¹²⁹	2003	17	9	8	53	33	27	6	82
McDougall ¹⁰⁵	1981	9	1	8	11	36	21	15	58
Stringfield ¹⁰⁷	1977	3	1	2	33	26	13	13	50
Summary		383	131	252	34	984	622	362	63

Rivera et al. Chest. 2013

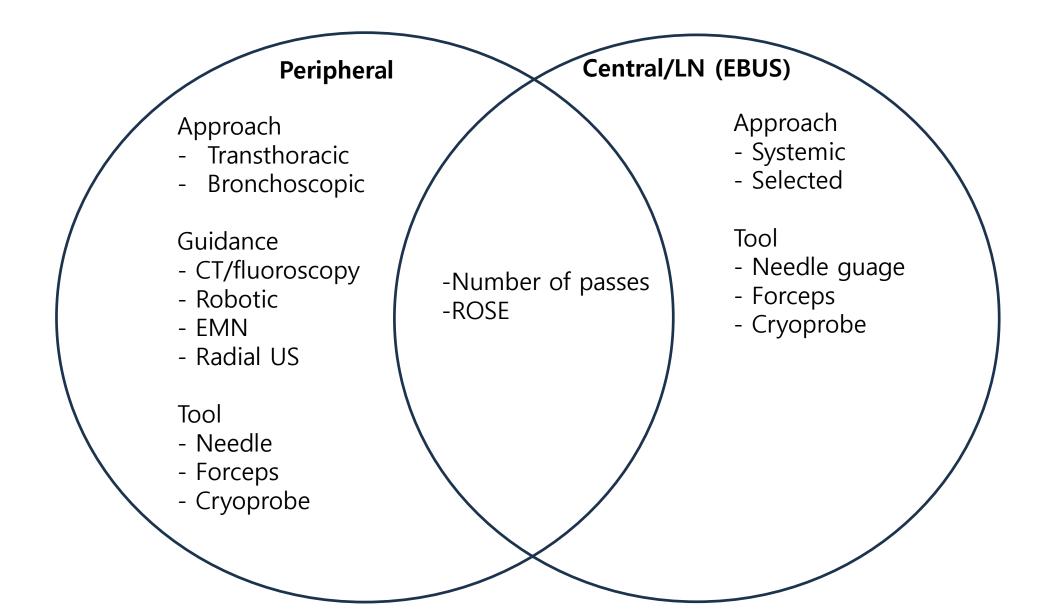
Transthoracic Needle Biopsy


- Conducted under local anesthesia
- High diagnostic yield > 90%
- Lower diagnostic yield for smaller nodules
- Notable rate of complications (pneumothorax rate =~ 25%)
- -> Increased risk with <2cm, and distance from pleura
- -> limitations from surrounding emphysema + lesions near diaphragm/major vessels

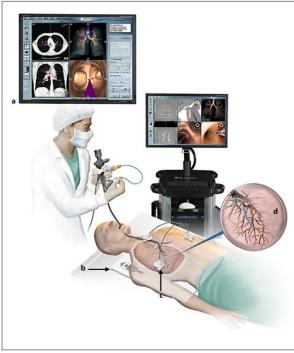


National Cancer Institute Lee et al. Radiology. 2019

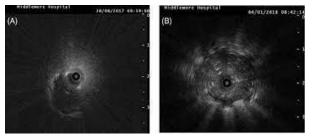
Challenges of Bronchoscopic Sampling of Peripheral Lesions



• Tissue requirements



How to Optimize Tissue Adequacy

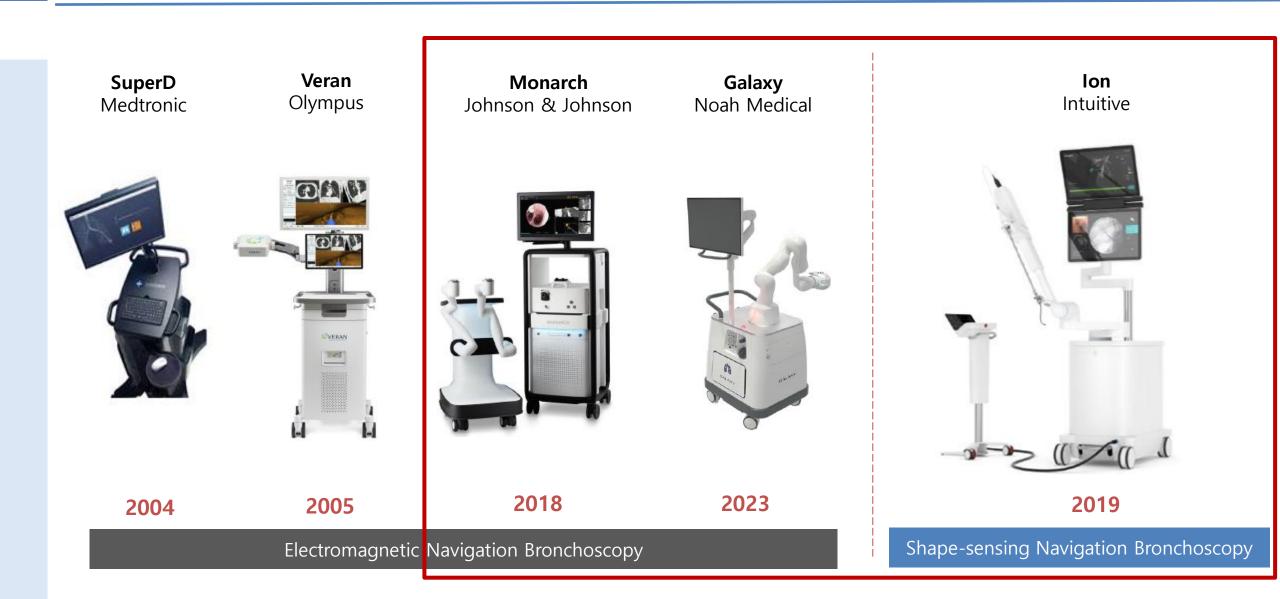

Advanced Image-guided Bronchoscopy

- Moderate sedation or general anesthesia
- Diagnostic yield of 70-80%
- Lower risk of complications (pneumothorax rate <5%)
- Sequential mediastinal staging with EBUS is available
- Lower diagnostic yield for smaller nodules without bronchus sign

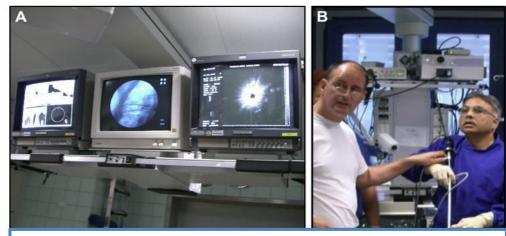
Electromagnetic Navigation Bronchoscopy

Radial EBUS

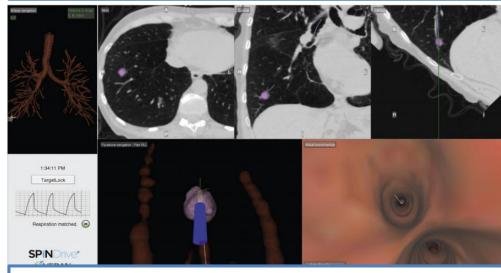
Robot-assisted (shape sensing)

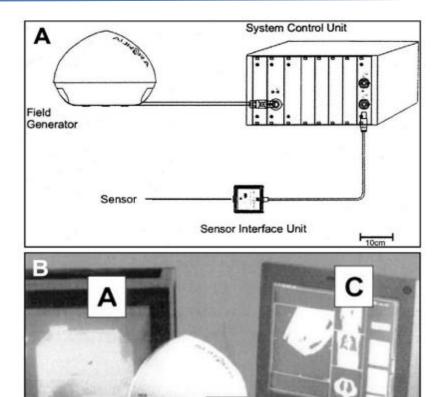

Kemp. Respiration. 2020 Simoff et al. BMC Pulm Med 2021

Choice for Initial Biopsy: TTNB or Bronchoscopy?

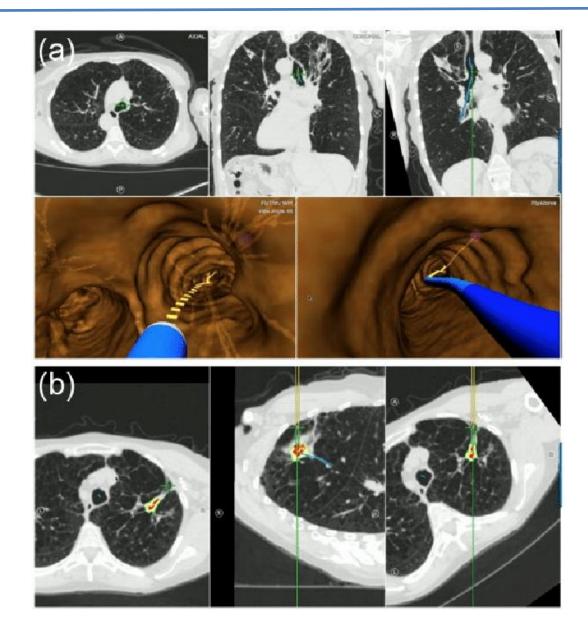

- VERITAS: RCT evaluating the diagnostic accuracy of TTNB vs. ENB

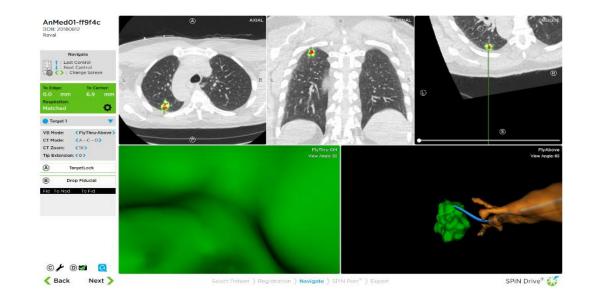
Diagnostic utility results								
(Overall prevalence of malignancy: 66.7%)	NB	CT-TTNB	Overall	Difference (95% credible interval)	Posterior Probability of Noninferiority			
Diagnostic yield	(n=121)	(n=113)	(n=234)					
Diagnostic	96 (79%)	88 (78%)	184 (79%)	0.02 (-0.02 to 0.05)	98.3%			
Non-diagnostic	25 (21%)	25 (22%)	50 (21%)					
Diagnostic accuracy	(n=119)	(n=110)	(n=229)					
Accurate	94 (79%)	81 (74%)	179 (78%)	0.05 (0.02 to 0.09)	99.7%			
Inaccurate	25 (21%)	29 (26%)	50 (22%)					


Landscape of Robotic & Navigation Assisted Bronchoscopy


Electromagnetic Navigation Bronchoscopy

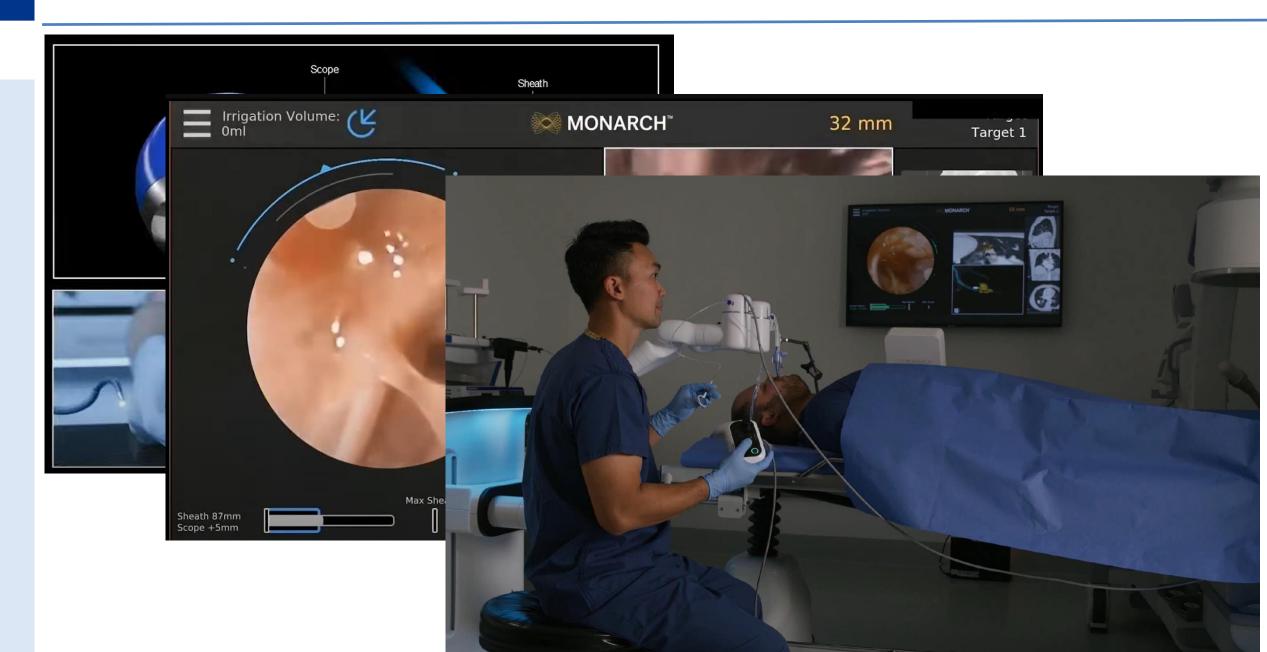
The first clinical study initiated in Germany, 2003 (SuperDimension)

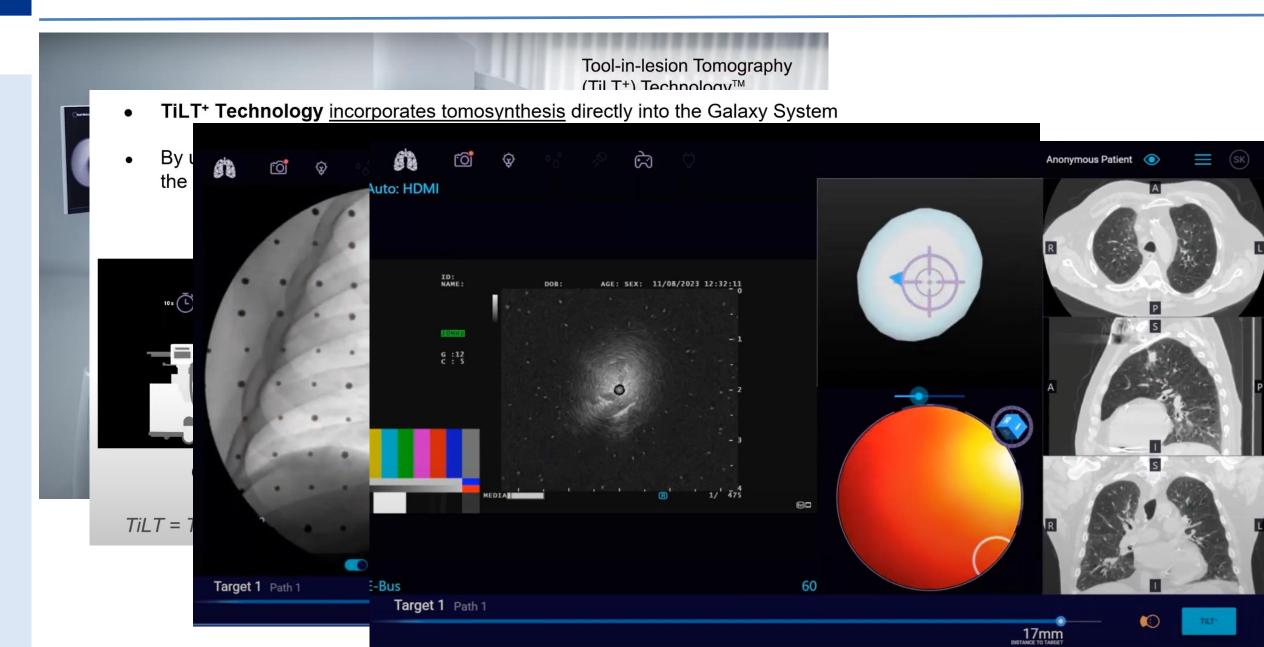

Third system developed by Veran 2006



Second ENB system by Aurora (Canada), 2005

в


Current ENB Platforms



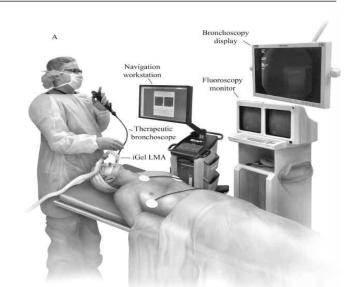
- Planning CT scan views
- Virtual bronchoscopic images.
- CT scan and lesion views guiding biopsy procedure.

Current RAB platforms: Monarch

Current RAB platforms: Galaxy

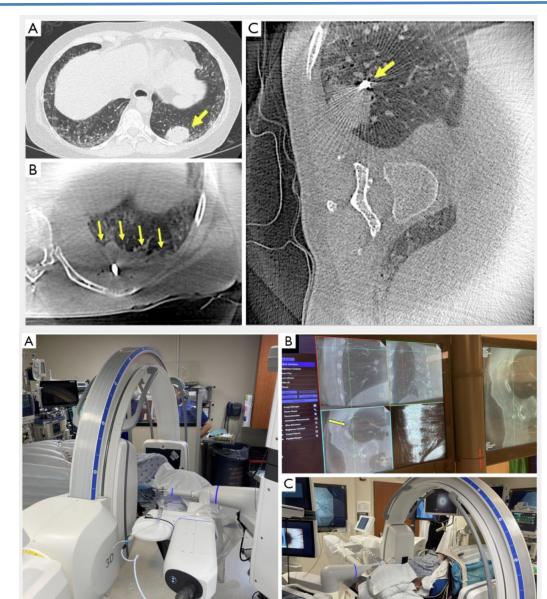
Shape-sensing Robotic Bronchoscopy: Ion

• Fiber optic shape-sensing as a novel navigation technology



Comparison with Conventional ENB

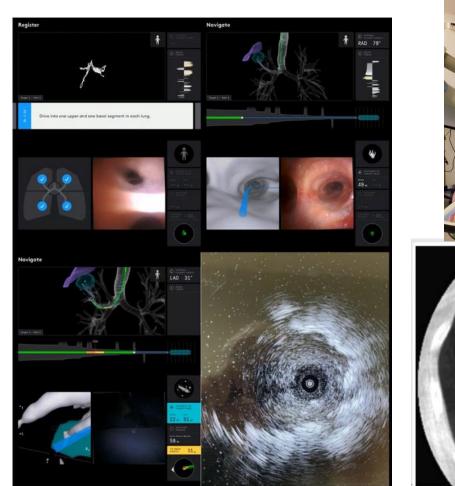
	Shape-sensing Robotic Bronchoscopy	Electromagnetic Navigation Bronchoscopy		
Technology for Navigation guidance	Shape-sensing fiberoptic	Electromagnetic		
EM Field generator, patient sensors	No	Yes		
Metal interference	No	Yes		
Visualization	Direct camera + Virtual	Virtual		
Catheter tracking	Full Catheter	Tip (EM sensor in catheter or tool)		
Catheter O.D	3.5mm	Bronchoscope: 6.0mm		
Working channel	2.0mm	2.0mm		
Flexible needle	Yes	No		
EBUS compatible	Yes	Yes		



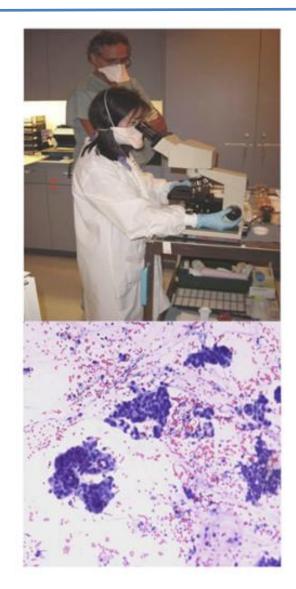
Comparison of Current Robotic Bronchoscopy Platforms

	MonarchTM Platform (Auris Health, Inc., Redwood City, CA, USA)	Ion Endoluminal RAB Platform (Intuitive Surgical©, Sunnyvale, CA, USA)	Galaxy SystemTM (Noah Medical, San Carlos, CA, USA)
	Sheath: 6 mm OD		
Bronchoscope	Bronchoscope: 4.0 mm OD	Single Bronchosope: 3.5 mm OD	Single Bronchoscope: 4.0 mm OD
Working Channel	2.1 mm	2.0 mm	2.1 mm
Navigation	Electromagnetic	Shape-sensing	Electromagnetic
Vision During Navigation	Yes	Yes	Yes
Vision During Biopsy	Yes	No	Yes
Imaging Integration	None	Cios Spin mobile CBCT C-arm (Siemens Healthineers AG, Erlangen, Germany)	TILT+ Technology+TM digital tomosynthesis with augmented fluoroscopy

Optimizing the Procedure: Anesthesia and Ventilation Protocol



LNVP VESPA Airway Endotracheal tube Endotracheal tube Dual ventilation strategy with pressure-controlled continuous Mode of Volume control ventilation mechanical ventilation and patient specific VT 10-12 cc/kg of IBW 6-8 cc/kg of IBW VT Lowering to the lowest tolerable FiO₂ FiO₂ <100% (titrated as low as possible to maintain an oxygen saturation of >94%) PEEP Upper/middle lobe target:10-15 cmH₂O 8-10 cmH₂O Lower lobe target: 15-20 cmH₂O[‡] Recruitment Performed post-intubation \rightarrow 4 alveolar recruitment maneuvers, Performed immediately post-intubation \rightarrow 10 hand-delivered via bagging the patient with 30 cmH₂O over 30 consecutive breaths at a plateau pressure of 40 maneuver seconds or 40 cmH₂O over 40 seconds. Variability in timing and cmH₂O, with a PEEP of 20 cmH₂O in pressure pressures based on anesthesiology personnel control mode*

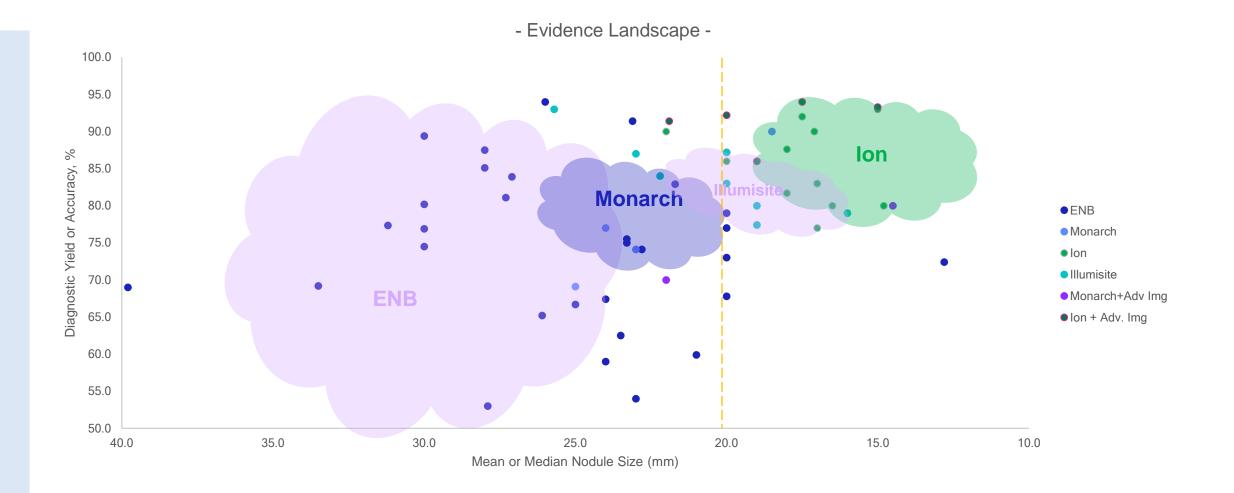

A comparison of two dedicated ventilation strategies for bronchoscopy: LNVP and VESPA

Khan et al. J Thorac Dis. 2023 Bhadra et al. Interv Pulmonol. 2022 Salahuddin et al. Chest. 2022

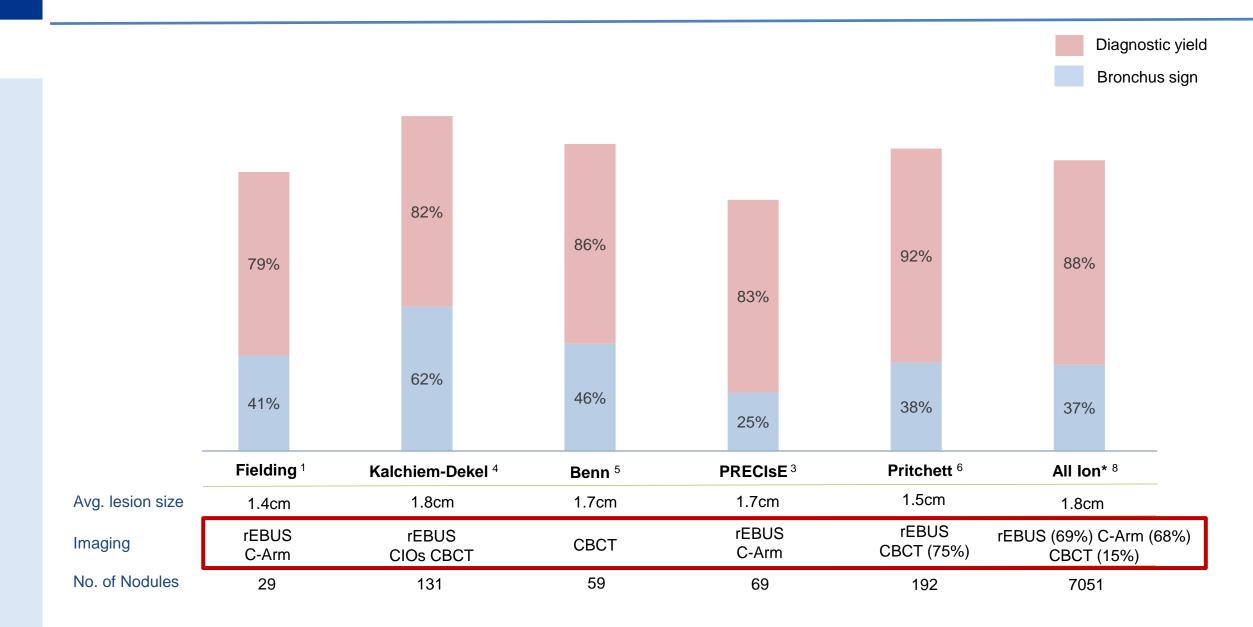
Optimizing the Procedure: Complementary Techniques

Radial EBUS

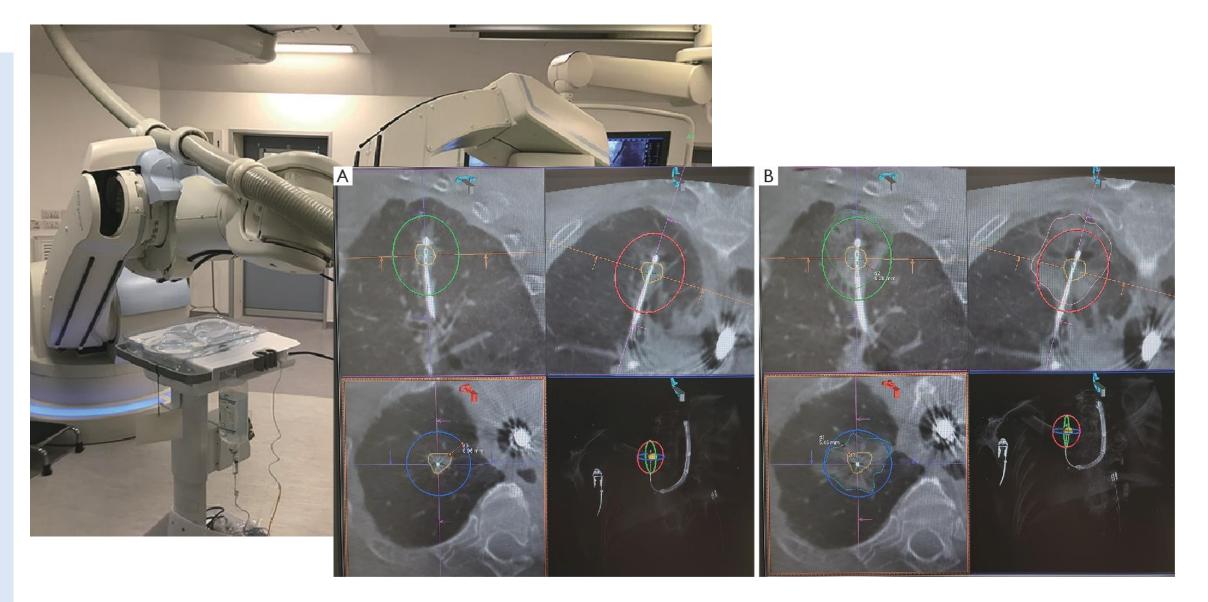
Cone-beam CT


Reports of Diagnostic Yield

Study	Robotic platform	Study design	Patients, n	Lesions, n	Lesion size, mm	Bronchus sign, n (%)	Solid lesion, <i>n</i> (%)	Auxiliary technique	Sampling method
Fielding et al. 2019 ³¹	Ion	Pro	29	29	12.2 ± 4.2^{a}	17 (58.6)	23 (79.3)	rE, Fl, ROSE	Needle, forceps, brush, BAL/wash
Benn et al. 2021 ³²	Ion	Pro	52	59	19.6 ± 10.9^{a}	27 (45.8)	41 (69.5)	CBCT, ROSE	Needle, forceps
Chen et al. 2021 ³³	Monarch	Pro	54	54	23.2 ± 10.8^{a}	32 (59.3)	NR	rE, Fl, ROSE	Needle, forceps
Kalchiem-Dekel et al. 2022 ³⁴	Ion	Retro	130	159	18 (13–27) ^b	100 (62.9)	116 (73.0)	rE, Fl, ROSE	Needle, forceps, brush
Oberg et al. 2022 ³⁵	Ion	Retro	112	120	22 (13–34.3) ^b	58 (48.3)	87 (72.5)	rE, Fl	Needle, forceps, cryoprobe
Cumbo-Nacheli et al. 2022 ³⁶	Monarch	Retro	20	20	22 ± 7^{a}	10 (50.0)	17 (85.0)	rE, CBCT	Needle, forceps
Xie et al. 2022 ³⁷	Ion	Pro	30	30	17.1 ± 4.3^{a}	23 (76.7)	26 (86.7)	rE, Fl, ROSE	Needle, forceps, brush
Vu et al. 2023 ³⁸	Ion	Retro	110	110	20 (15–24) ^b	27 (24.5)	87 (79.1)	rE, Fl, ROSE	Needle, forceps
Agrawal et al. 2023 ³⁹	Monarch	Retro	124	124	20.5 (13–30) ^b	93 (75.0)	71 (57.3)	rE, Fl, ROSE	Needle, forceps
Manley et al. 2023 ⁴⁰	Monarch	Pro	20	20	14.5 (8–28) ^c	12 (60.0)	NR	rE, Fl, nCLE, ROSE	Needle, forceps


Study Total Proportion 95%-CI Events Fielding-2019 21 29 0.724 [0.528; 0.873] Benn-2021 49 59 0.831 [0.710; 0.916] Chen-2021 40 54 0.741 [0.603; 0.850] Kalchiem-Dekel-2022 159 0.818 [0.749; 0.874] 130 Oberg-2022 108 120 0.900 [0.832; 0.947] Cumbo-Nacheli-2022 20 0.700 [0.457; 0.881] 14 Xie-2022 27 30 0.900 [0.735; 0.979] Vu-2023 80 110 0.727 [0.634; 0.808] Agrawal-2023 95 124 0.766 [0.682; 0.837] Manley-2023 16 20 [0.563; 0.943] 0.800 Common effect model 725 [0.792; 0.847] 0.819 Random effects model 0.804 [0.757; 0.851] Heterogeneity: $I^2 = 59\%$, $\tau^2 = 0.0029$, p < 0.01 0.5 0.6 0.7 0.8 0.9

Zhang et al. Thorac Cancer. 2024.


Diagnostic Yield by Lesion Size and Platforms

CT Bronchus Sign and Diagnostic Yield

Future Directions of Research

Chan et al. Transl Lung Cancer Res. 2021.

Thank you for your attention

Contact Email for Inquiries: kimyw@snu.ac.kr

