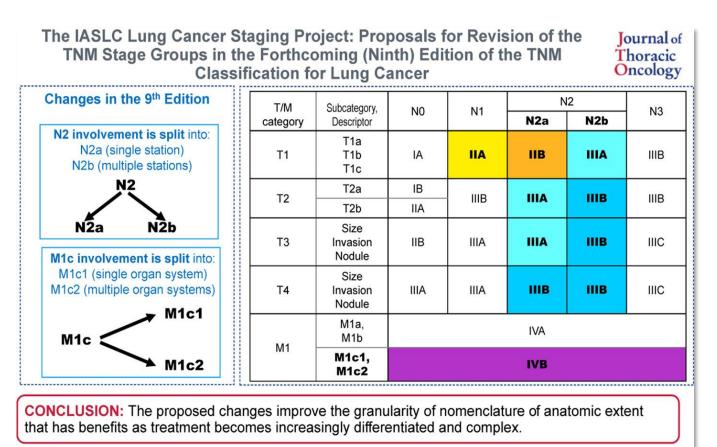


9th Edition TNM staging for lung cancer


Dohun Kim Chungbuk National University

Changes

- TNM
 - N2 \rightarrow N2a (Single), N2b (Multiple)
 - M1c \rightarrow M1c1 (M1c in one organ), M1c2(M1c in multiple organ)

- Stage
 - T1N1: IIB \rightarrow IIA
 - T1N2a: IIIA \rightarrow IIB
 - T3N2a: IIIB → IIIA

Changes

Rami-Porta et al. J Thorac Onc (2024)

IASLC

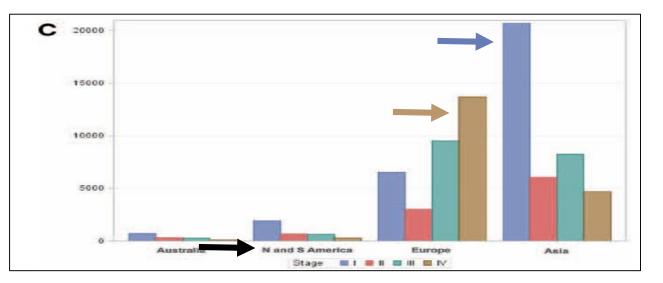
Stage Up T2N2b:IIIA \rightarrow IIIB **Stage Down** T1N1: IIB \rightarrow IIA T1N2a: IIIA \rightarrow IIB T3N2a: IIIB \rightarrow IIIA No change M1C(1 or 2): IVB

Thank You for Your Attention

It's Over.

What more do you expect?

Issues in 8th edition


• Dataset

- Generalizability
- T (Solved)
 - How to know the Tis and Tmi before surgery?
- N (Suggestion)
 - Survival of single N2 > Multiple N1
- **M** (Skipped)
 - Similar survival, similar M between M1a and M1b \rightarrow Why are they divided?

Issues in Datasets (8th)

TABLE 5. Comparison of Basic Elements of the Two IASLC Databases Used for Informing the seventh Edition and the eighth Edition of the TNM Classification of Lung Cancer

Element	Database for the seventh Edition	Database for the eighth Edition
Period of diagnosis	1990 to 2000	1999 to 2010
Total patients submitted	100,869	94,708
Geographical origin		
Europe	58,701 (58%)	46,560 (49%)
North America	21,130 (21%)	4,660 (5%)
Asia	11,622 (11.5%)	41,705 (44%)
Australia	9,416 (9.3%)	1,593 (1.7%)
South America	0	190 (0.3%)
Patients excluded	19,374 (19%)	17,552 (18%)
Patients included for analyses	81,495	77,154
NSCLC	68,463 (84%)	70,967 (92%)
SCLC	13,032 (16%)	6,189 (8%)
Treatment modalities		
Surgery alone	41%	57.7%
Radiotherapy + surgery	5%	1.5%
Chemotherapy + surgery	4%	21.1%
Chemotherapy alone	23%	9.3%
Radiotherapy alone	11%	1.5%
Chemotherapy + radiotherapy	12%	4.7%
Trimodality	3%	4.4%

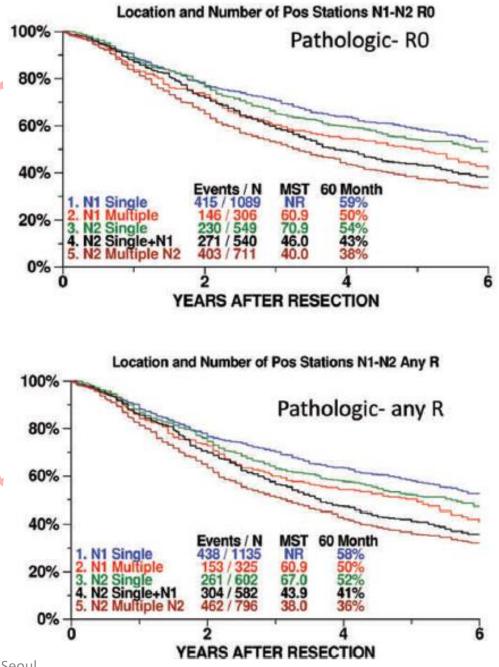
From 35 sources and 16 countries

- 95% (90,041) From established database
- Europe + Asia (mainly Japan) = 93%
- NSCLC = 92%
- Surgery (only; 58% + others; 27%) = 85%
- No molecular information

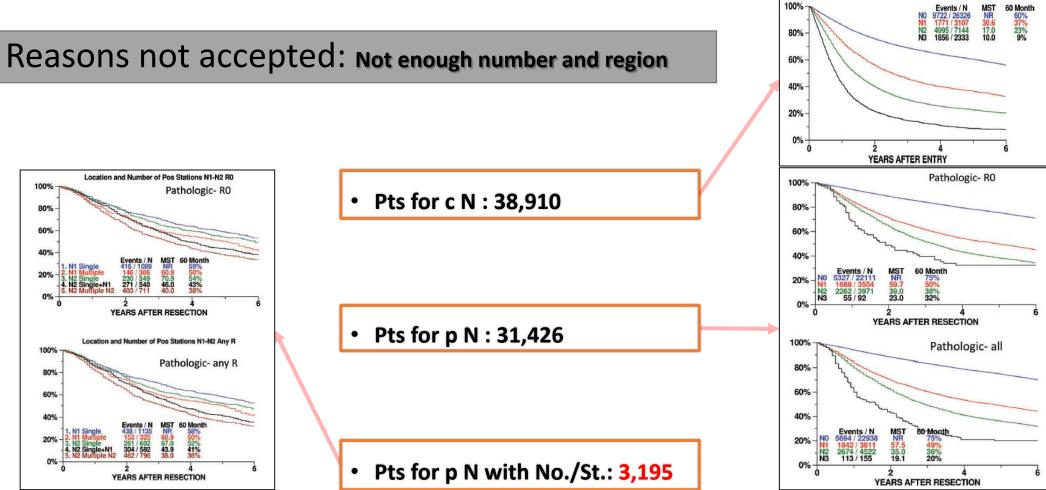
The modified staging		
systemmay be		
more optimized in		
early surgically		
treatable disease		
Viahos et al, Radiol Clin N am, 2018		

Issues in N

Survivals of N2 > N1


N2 single (N2a1)> N1 multiple (N1b)

N2 single + N1 (N2a2) = N1 multiple (N1b) 2years


N2 multiple : worst

Strategy of treatment

- Neoadjuvant treatment \rightarrow N1b (rather than N2a1), N2a2
- Upfront surgery \rightarrow N2a1

Issues in N

Issues in M

			Overall Survival	
Proposed Category	Variable	n/N (%)	HR (95% CI)	<i>P</i> Value
M1a	M1a	324/1025 (32)	Reference level	
M1b T factor	M1b, single organ/lesion	225/1025 (22)	1.11 (0.91, 1.36)	0.308
M1c	M1b, single organ/multiple lesions	229/1025 (22)	1.63 (1.34, 1.99)	< 0.001
	M1b, multiple organs	247/1025 (24)	1.85 (1.52, 2.24)	< 0.001

P value from score χ^2 test in Cox regression. HR, hazard ratio; 95% CI, 95% confidence interval

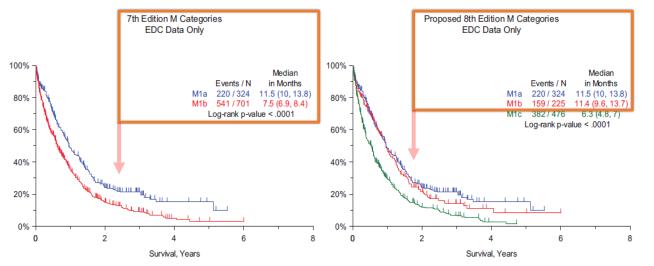


FIGURE 8. The 7th edition and proposed 8th edition M categories.

Travis et al. Journal of Thoracic Oncology, 2016 Wilfried et al Journal of Thoracic Oncology, 2015 Vlahos et al. Radiol Clin N Am 2018

The 38th KTCVS Spring Meeting 2024 Seoul

- Similar M in M1a and M1b
- No survival diff. btw M1a and M1b.

2411 NSCLC cases

- 1059 from CRAB
- 1269 from Turkish Thoracic Society
- 56 from others
- Final analysis from only CRABs
- Different TNM, same staging?
 - for future data collection and analysis

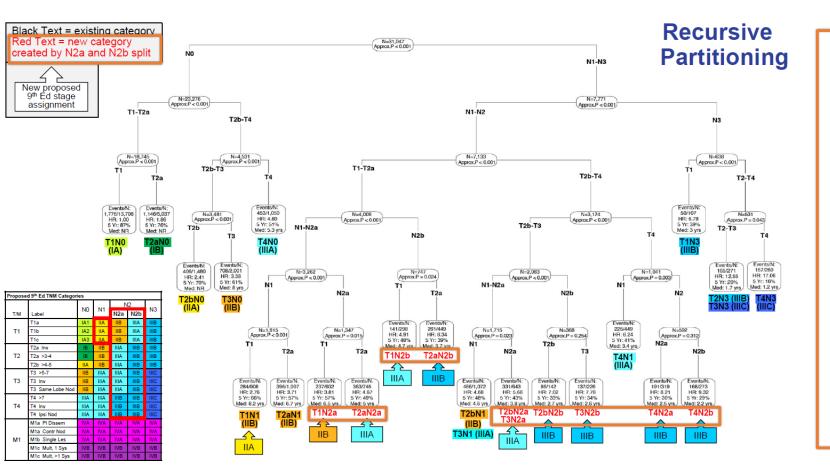
Dive into 9th Edition

Have the issues been resolved?

the Wark K, Niedmur and Deverse, K, Niedmur and Deverse, K, Niedmur Niemo D. Travis, K Saga Motsulura, endour of the Ite and Martin Putora, David Rice, MB, BC, Martin Valerie W. Rusch, M Paul Martin Putora, David Rice, MB, BC, Martin Wembers of the Sta	Association for the Study of Lung Diect for Lung Cancer: Proposals the N Descriptors in the MINIAL ARTICLE The International Association for the Study of Lung Association of the TNM Association for the Study of Lung thcoming (Ninth) Edition of the TNM EDITORIAL EDITORIAL The Only Constant Is Change: Introducing International Association for the Study of LUNG Cancer Staging Project: Proposals for EDITORIAL EDITORIAL
	International Association For the Ninth Edition of Cancer Proposals for the Ninth Edition of Stage Classification of Thoracic Tumors Frank C. Detterbeck, MD, ^{3,*} Hisao Asamura, MD, ^b Ramón Ran

Dataset in 9th Ed.

- Patients: 94708 (35 sites, 16 countries) → **124,581 (78 sites, 25 countries)**
- Prospective DB: CRAB (5% \rightarrow 19%)


Table 2. Characteristics of the IASLC Databases			
Element	Database for the Seventh Edition	Database for the Eighth Edition	Database for the Ninth Edition
Period of diagnosis	1990-2000	1999-2010	2011-2019
Total patients submitted	100,869	94,708	124,581
Geographic origin, n (%)			
Europe	58,701 (58)	46,560 (49)	30,827 (25)
North America	21,130 (21)	4660 (5)	19,608 (16)
Asia / Australia	21,038 (21)	43,298 (46)	69,749 (56)
South/Central America	0	190 (0.3)	4225 (3)
Africa/Middle East	0	0	172 (0.1)
Patients excluded, n (%)	19,374 (19)	17,552 (18)	37,583 (30)
Patients included	81,495	77,154	87,043
NSCLC, n (%)	68,463 (84)	70,967 (92)	73,197 (84)
SCLC, n (%)	13,032 (16)	6189 (8)	5530 (6)
Other, n (%)			8316 (10)
Treatment modalities, %			
Surgery alone	41	58	47
Radiotherapy + surgery	5	2	2
Chemotherapy + surgery	4	21	13
Chemotherapy alone	23	9	11
Radiotherapy alone	11	2	3
Chemotherapy + radiotherapy	12	5	6
Trimodality	3	4	13

for the	•	Population	
ion		 56% in Asia (from 46%), 16 Europe (46%) 	6% in NA (5%), 25% in
1	•	Types	
J		• NSCLC (84%), SCLC (6%	6)
	•	Treatments	
1		Surgery alone	47% (< 58%)
		Surgery combined	75% (🗲 85%)
	• Representative issues in terms of being		
		focused on Asia and surg	jery.

New N in 9th ed.

• N2 \rightarrow N2a and N2b

• Recursive Partitioning (재귀 분석)

- 큰 문제를 작은 범위로 줄여 분석.
 - T1N1 was distinct from stage IIB (IIA)
 - T1N2a was distinct from stage IIIA (IIB)
 - T3N2a was distinct from stage IIIB (IIIA)
- Allocated into the different stage for different survival

New M in 9th ed.

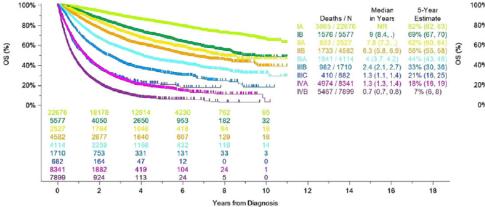
• M1c \rightarrow M1c1 and M1c2

8th Ed TNM Categories

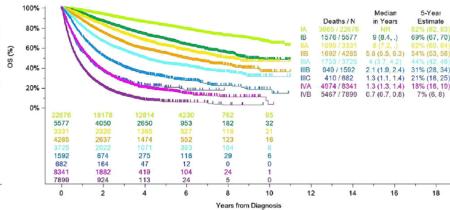
5 Eu	TNM Categories	r –			
T/M	Label	NO	N1	N2	Ν3
	T1a	IA1	IIB	IIIA	IIIB
T1	T1b	IA2	IIB	IIIA	IIIB
	T1c	IA3	IIB	IIIA	IIIB
	T2a Inv	IB	IIB	IIIA	IIIB
T2	T2a >3-4	IB	IIB	IIIA	IIIB
	T2b >4-5	IIA	IIB	IIIA	IIIB
	T3 >5-7	IIB	IIIA	IIIB	IIIC
Т3	T3 Inv	IIB	IIIA	IIIB	IIIC
	T3 Same Lobe Nod	IIB	IIIA	IIIB	IIIC
	T4 >7	IIIA	IIIA	IIIB	IIIC
T4	T4 Inv	IIIA	IIIA	IIIB	IIIC
	T4 Ipsi Nod	IIIA	IIIA	IIIB	IIIC
	M1a PI Dissem	IVA	IVA	IVA	IVA
M1	M1a Contr Nod	IVA	IVA	IVA	IVA
IVIT	M1b Single Les	IVA	IVA	IVA	IVA
	M1c Mult Les	IVB	IVB	IVB	IVB

Categories Proposed 9th Ed TNM Categories N2 NO N1 Ν3 N2a N2b T/M Description IIB T1a ≤1 cm IA1 IIA IIIA IIIB IIA IIВ IIIA IA2 IIIB T1 T1b >1 to ≤2 cm IA3 IIA IIB IIIA IIIB T1c >2 to \leq 3 cm IIB IIIA IIIB IB IIIB T2a Visceral pleura / central invasion IIIA IIIB IB IIB T2 T2a >3 to ≤4 cm IIIB IIIA IIA IIB IIIB T2b >4 to ≤5 cm IIIB IIIA IIIA IIIB IIB T3 >5 to ≤7 cm IIIC IIIA IIIA IIIB Τ3 T3 Invasion IIB IIIC IIIA IIIA IIIB IIIC IIB T3 Same lobe tumor nodule IIIA IIIA IIIB IIIC T4 >7 cm IIIB IIIA IIIB IIIB Τ4 IIIA T4 Invasion IIIA IIIB IIIA IIIB IIIC T4 Ipsilateral tumor nodule IVA IVA IVA IVA M1a Pleural / pericardial dissemination IVA M1a Contralateral tumor nodule IVA IVA IVA IVA M1 M1b Single extrathoracic lesion IVA IVA IVA IVA IVA M1c1 Multiple lesions, 1 organ system IVB M1c2 Multiple lesions, >1 organ system

Proposed 9th Ed TNM Categories


- M1a and M1b (stage IVA)
 - Similar survival
 - Same stage
- M1c1 and M1c2 (Stage IVB)
 - Different TNM, DIFFERENT survival
 - SAME stage

Limitation I


Survival이 다르면 다른 stage에 배정 (T1N1, T1N2a, T3N2a, T2N2b) Survival이 다른데 왜 같은 stage에 배정 ? (M1c1 and M1c2)

Validation (Clinical)

Survival by Clinical Stage, Applying the 8th edition Classification to the 9th edition Database

Survival by Clinical Stage, Applying the Proposed 9th edition Stage Groups to the 9th edition Database

	8th Ed Clinical TNM Stage Groups					
		n=55,986; R ² =64.9454				
Multivariable Cox Model	n/N	(%)	HR	(95% CI)	P-value	
IB (vs IA)	5,513/55,986	(9.85%)	1.77	(1.67-1.88)	<.0001	
IIA (vs IB)	2,487/55,986	(4.44%)	1.18	(1.08-1.28)	0.0002	
IIB (vs IIA)	4,494/55,986	(8.03%)	1.21	(1.11-1.32)	<.0001	
IIIA (vs IIB)	3,471/55,986	(6.20%)	1.40	(1.31-1.50)	<.0001	
IIIB (vs IIIA)	1,608/55,986	(2.87%)	1.42	(1.31-1.54)	<.0001	
IIIC (vs IIIB)	632/55,986	(1.13%)	1.72	(1.53-1.94)	<.0001	
IVA (vs IIIC)	7,931/55,986	(14.17%)	1.10	(0.99-1.23)	0.0630	
IVB (vs IVA)	7,309/55,986	(13.06%)	1.68	(1.61-1.75)	<.0001	
Age ≥65 (vs <65)	31,754/55,986	(56.72%)	0.70	(0.68-0.72)	<.0001	
Female (vs Male)	27,370/55,986	(48.89%)	1.20	(1.17-1.24)	<.0001	
Europe (vs Asia)	11,875/55,986	(21.21%)	1.31	(1.27-1.36)	<.0001	
North America (vs Asia)	9,811/55,986	(17.52%)	1.10	(1.05-1.14)	<.0001	
Rest of World (vs Asia)	1,294/55,986	(2.31%)	1.78	(1.62-1.95)	<.0001	
Squamous (vs Non-squamous)	12,304/55,986	(21.98%)	0.70	(0.68-0.72)	<.0001	

	9th Ed Clinical TNM Stage Groups n=55.986; R²=65.0371			
Multivariable Cox Model	n/N (%)	HR (95% CI)	P-value	
IB (vs IA)	5,513/55,986 (9.85%)	1.77 (1.67-1.88)	<.0001	
IIA (vs IB)	3,280/55,986 (5.86%)	1.18 (1.09-1.28)	<.0001	
IIB (vs IIA)	3,701/55,986 (6.61%)	1.25 (1.16-1.35)	<.0001	
IIIA (vs IIB)	3,590/55,986 (6.41%)	1.33 (1.24-1.43)	<.0001	
IIIB (vs IIIA)	1,489/55,986 (2.66%)	1.53 (1.41-1.66)	<.0001	
IIIC (vs IIIB)	632/55,986 (1.13%)	1.62 (1.44-1.83)	<.0001	
IVA (vs IIIC)	7,931/55,986 (14.17%)	1.10 (0.99-1.23)	0.0643	
IVB (vs IVA)	7,309/55,986 (13.06%)	1.68 (1.61-1.75)	<.0001	
Age ≥65 (vs <65)	31,754/55,986 (56.72%)	0.70 (0.68-0.72)	<.0001	
Female (vs Male)	27,370/55,986 (48.89%)	1.20 (1.17-1.24)	<.0001	
Europe (vs Asia)	11,875/55,986 (21.21%)	1.30 (1.26-1.35)	<.0001	
North America (vs Asia)	9,811/55,986 (17.52%)	1.10 (1.05-1.14)	<.0001	
Rest of World (vs Asia)	1,294/55,986 (2.31%)	1.78 (1.62-1.95)	<.0001	
Squamous (vs Non-squamous)	12,304/55,986 (21.98%)	0.70 (0.68-0.72)	<.0001	

Survival

- Well divided according to the clinical stages
- Not different in IIIC and IVA

Prognostic factors

- Higher stages means worst survival except IIIC and IVA
- Worst prognostic factors are young age, female, Europe, NA, and ADC, but vice versa in manuscripts

Validation (Pathologic)

Deaths /

740 / 1269

36/54

IIIC

12

Survival by Pathologic Stage, Applying the 8th edition Classification to the 9th edition Database

Annie Constant of the

Years from Surgery

68

10

428

112 271

37

1. 11 1. 1

1680

382 1112

148

4112

2568

100%

80%

60%

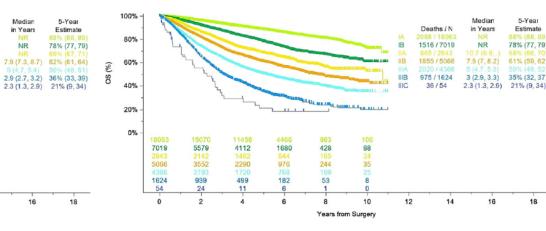
40%

20%

0%

7019

5599


1269

5579

3958

(%) SO

Survival by Pathologic Stage, Applying the Proposed 9th edition Stage Groups to the 9th edition Database

		8th Ed Pathologic TNM Stage Groups n=38,280; R²=45.5623		
Multivariable Cox Model	n/N (%)	HR (95% CI)	P-value	
IB (vs IA)	6,990/38,280 (18.26%)	1.84 (1.73-1.97)	<.0001	
IIA (vs IB)	1,733/38,280 (4.53%)	1.33 (1.20-1.47)	<.0001	
IIB (vs IIA)	5,570/38,280 (14.55%)	1.29 (1.17-1.43)	<.0001	
IIIA (vs IIB)	4,688/38,280 (12.25%)	1.62 (1.53-1.72)	<.0001	
IIIB (vs IIIA)	1,259/38,280 (3.29%)	1.48 (1.36-1.61)	<.0001	
IIIC (vs IIIB)	52/38,280 (0.14%)	1.71 (1.21-2.42)	0.0024	
Age ≥65 (vs <65)	21,478/38,280 (56.11%)	0.61 (0.58-0.64)	<.0001	
Female (vs Male)	19,824/38,280 (51.79%)	1.02 (0.98-1.07)	0.3049	
Europe (vs Asia)	4,227/38,280 (11.04%)	1.52 (1.43-1.62)	<.0001	
North America (vs Asia)	6,351/38,280 (16.59%)	1.53 (1.44-1.62)	<.0001	
Rest of World (vs Asia)	1,393/38,280 (3.64%)	1.56 (1.41-1.73)	<.0001	
Squamous (vs Non-squamous)	8,431/38,280 (22.02%)	0.70 (0.67-0.73)	<.0001	

	9th Ed Pathologic TNM Stage Groups n=38,280; R²=46.0529			
Multivariable Cox Model	n/N	(%)	HR (95% CI)	P-value
IB (vs IA)	6,990/38,280	(18.26%)	1.84 (1.72-1.97)	<.0001
IIA (vs IB)	2,928/38,280	(7.65%)	1.40 (1.29-1.52)	<.0001
IIB (vs IIA)	4,375/38,280	(11.43%)	1.25 (1.15-1.36)	<.0001
IIIA (vs IIB)	4,329/38,280	(11.31%)	1.49 (1.40-1.59)	<.0001
IIIB (vs IIIA)	1,618/38,280	(4.23%)	1.70 (1.57-1.83)	<.0001
IIIC (vs IIIB)	52/38,280	(0.14%)	1.60 (1.13-2.25)	0.0074
Age ≥65 (vs <65)	21,478/38,280	(56.11%)	0.61 (0.58-0.64)	<.0001
Female (vs Male)	19,824/38,280	(51.79%)	1.03 (0.99-1.07)	0.1725
Europe (vs Asia)	4,227/38,280	(11.04%)	1.51 (1.42-1.61)	<.0001
North America (vs Asia)	6,351/38,280	(16.59%)	1.55 (1.46-1.65)	<.0001
Rest of World (vs Asia)	1,393/38,280	(3.64%)	1.58 (1.43-1.75)	<.0001
Squamous (vs Non-squamous)	8,431/38,280	(22.02%)	0.68 (0.65-0.72)	<.0001

Survival

18

- pStage includes no M1, no neoadjuvant, and operated patients
- No difference between Female and Male

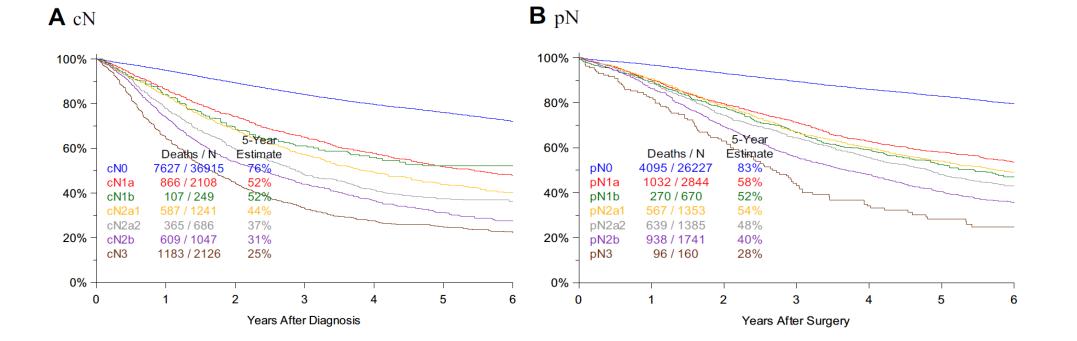
Prognostic factors ۰

- Higher stages means worst survival
- Worst factors are younger, Europe, NA, and ADC in table but vice versa in manuscript

Recommendations in Discussion

- To distinguish N2a vs N2b
 - Through mediastinal staging using PET/CT/Mediastinoscopy will be required.
- Treatment of T1N2a
 - Should not change from the guideline for stage IIIA
 - A mere change in the classification does not imply an automatic change in treatment.

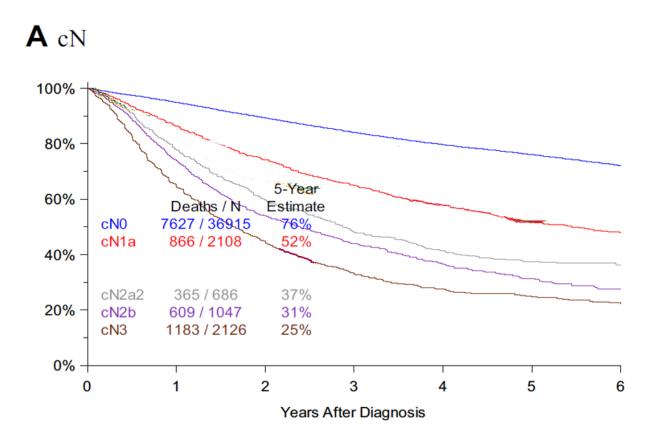
Line 4-7, page 12, Ramon et al. IASLC staging project...JTO 2024 Mar


Limitation II>

임상 적용을 용이하게 하는 것이 병기 설정의 궁극적 목적이라면서 병기가 달라졌는데, 임상 적용을 그대로 유지하는 이유는 무엇인가?

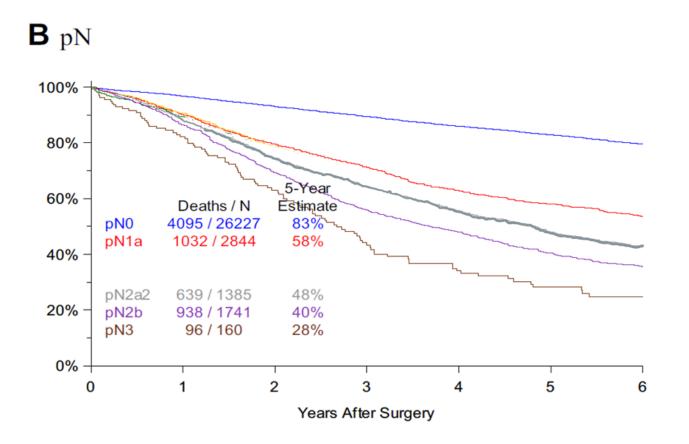
Recommendations in Discussion

- N2 \rightarrow N2a and N2b. In other words,
 - No N1a vs N1b
 - No N2a1 or N2a2
- Because survival of different number of zone and station was significantly different **only in selected pathologic population**


Survival of multiple N using 9th DB

No clear separation btw subcategories in c and p stage

proposals for the revision of N descriptors in the forthcoming ninth edition of the TNM...

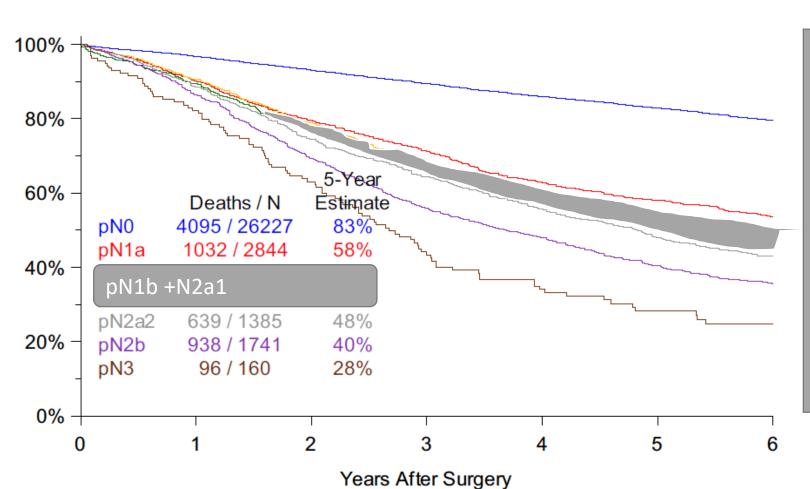

What if N1b and N2a1 are removed?

- Each LN staging is well distinguished
- There seems to be a

statistical difference.

What if N1b and N2a1 are removed?

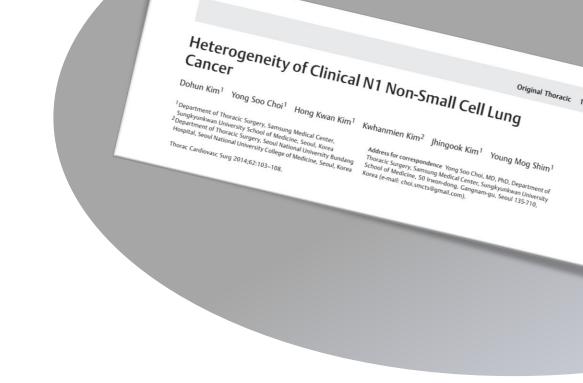
Each LN staging is


well distinguished

• There seems to be a

statistical difference.

What if N1b and N2a1 are integrated into NEW stage?


 $\boldsymbol{B} \ pN$

Each LN staging is well distinguished

•

There seems to be a statistical difference.

Limitation III>

Simple is Best, but We may lose the opportunity to find out the "heterogeneity of N1 in NSCLC"

Recommendations in Discussion

Five category of AJCC for staging: The new proposal meets all the followings

- Discrimination
- Calibration
- Generalizability
- Clinical relevance
- Parsimony

Different stage means different prognosis The agreement between predicted and observed ones The classification system works well in different settings. The usefulness of the staging system in clinical practice *The staging system should be simple and easy to use*

Limitation IV>

Discrimination	 Same survival, different stage (stage IIIC vs IVA) Different survival, same stage(M1c1 vs M1c2)?
Calibration	 Newer Treatment wants Newer Marker, not only TNM
Generalizability	 Just for Operable, Asian lung cancer patients?
Clinical relevance	 Stage is in IIB, but Treatment in IIIA (T1N2a) Different prognosis, but same stage and same treatment (M1c1 and M1c2)
Parsimony	 Similar treatment, prognosis, and follow up (T1a, b, c) Not by place, but by number looks simple and effective (for Lymph node)

Conclusions

Better staging system

- Better dataset in generalizability
- Clear separation of survival and good usability
- Numbering system in LN and mets

Limitations

Discrepancy between stage and treatment (T1N2a, M1c1 vs. M1c2)

• Not enough generalizability

Still anatomic extent (No Gene, No biomarker, No Immune system)

The only constant is Change

FC. Detterbeck et al. Editorial JTO 2023

Thank You for Your Attention