

Traumatic Hemothorax : NOM or Surgical management or Embolization

### Moon Jonghwan

Trauma Surgery, Dept. of Surgery, Ajou University School of Medicine

Ajou University Hospital / South Gyeonggi Regional Trauma Center



### It generally has been reported that thoracotomy will be required in approximately **30%** of cases presenting after **penetrating chest injury** and in **15% after blunt chest trauma**.



# **KTDB in Ajou Hospital**

- 2016 ~ 2023
- bleeding으로 thoracotomy or VATS 시행
- # Thorax AIS  $\geq$  1
- **Blunt Trauma : 146/9168(1.6%)**
- Penetrating Trauma : 44/236(18.6%)
- # Thorax AIS  $\geq$  3
- Blunt Trauma : 133/7490(1.8%)
- Penetrating Trauma : 38/177(21.4%)



# **Surgical Timing**

### Immediate & Emergent Thoracotomy

- Traumatic Cardiac Arrest
- Shock
- In Extremis
- Emergency Room

### Urgent Thoracotomy

- Newly developed lifethreatening condition
- Prevent the development of deterioration, injury, or infection
- Operating Room (<48hr)</li>

### **Delayed Thoracotomy**

- Complications or missed injury of Thoracic trauma
- Delayed repairs of diaphragmatic injury or aortic injury
- Retained hematoma

# Immediate & Emergent Thoracotomy

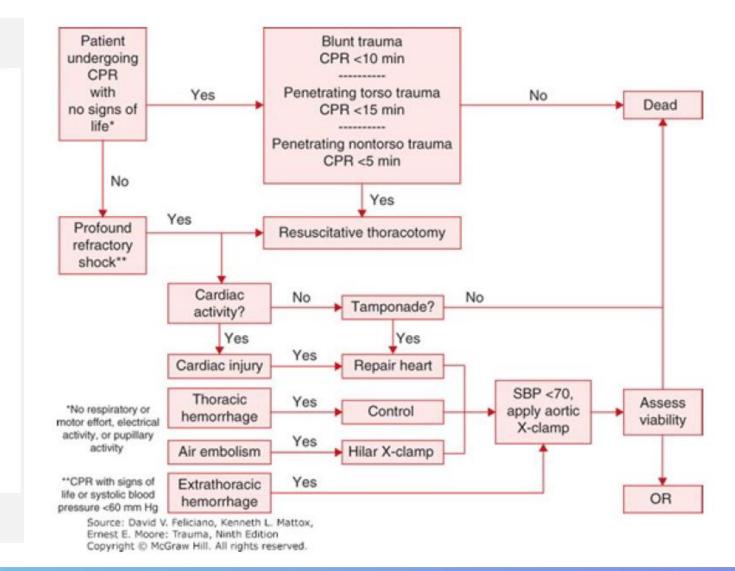
# **Emergency thoracotomy** may be defined as that occurring either immediately at the site of injury, in the emergency department, or in the operating room, **as an integral part of the initial resuscitation**.

# Immediate & Emergent Thoracotomy

#### INDICATIONS:

#### Salvageable postinjury cardiac arrest:

- Patients sustaining witnessed penetrating thoracic trauma with <15 min of prehospital CPR
- Patients sustaining witnessed penetrating nonthoracic trauma with <5 min of prehospital CPR.
- Patients sustaining witnessed blunt trauma with <10 min of prehospital CPR


### Persistent severe postinjury hypotension (SBP < 60 mm Hg) due to:

Cardiac tamponade

Hemorrhage-intrathoracic, intra-abdominal, extremity, cervical Air embolism

### CONTRAINDICATIONS:

CPR >15 min following penetrating injury and no signs of life (pupillary response, respiratory effort, or motor activity) CPR >10 min following blunt injury and no signs of life. Asystole is the presenting rhythm and there is not pericardial tamponade



# Immediate & Emergent Thoracotomy

An evidence-based approach to patient selection for emergency department thoracotomy: A practice management guideline from the Eastern Association for the Surgery of Trauma

Mark J. Seamon, MD, Elliott R. Haut, MD, PhD, Kyle Van Arendonk, MD, Ronald R. Barbosa, MD, William C. Chiu, MD, Christopher J. Dente, MD, Nicole Fox, MD, Randeep S. Jawa, MD, Kosar Khwaja, MD, J. Kayle Lee, MD, Louis J. Magnotti, MD, Julie A. Mayglothling, MD, Amy A. McDonald, MD, Susan Rowell, MD, MCR, Kathleen B. To, MD, Yngve Falck-Ytter, MD, and Peter Rhee, MD, MPH, Philadelphia, Pennsylvania

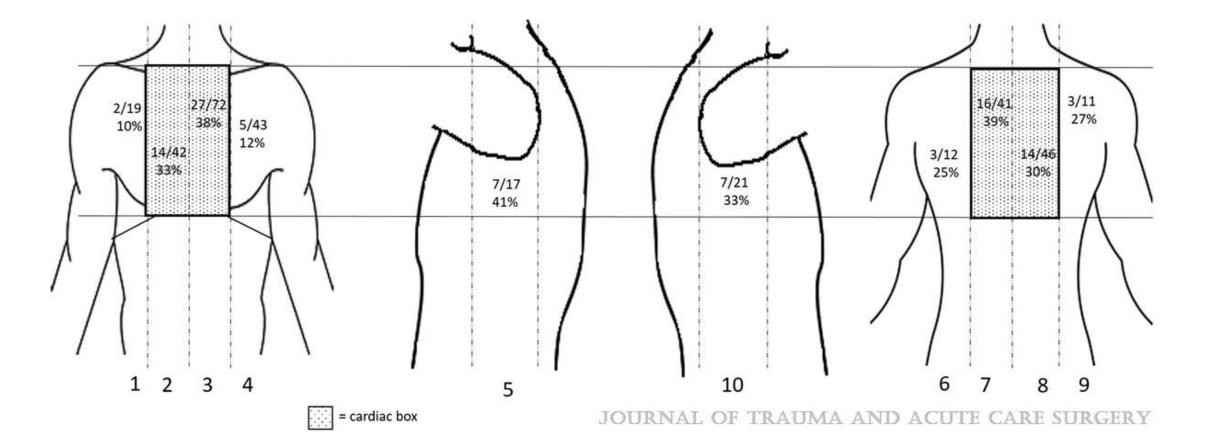
J Trauma Acute Care Surg. 2015;79: 159Y173.

아주대학교의료

| Question | Recommendation                                                                                                                                                                                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PICO #1  | In patients who present pulseless to the Emergency Department with signs of life after penetrating thoracic injury, we strongly recommend resuscitative Emergency Department thoracotomy. Strong Recommendation                                                     |
| PICO #2  | In patients who present pulseless to the Emergency Department <u>without signs of life</u> after <u>penetrating thoracic injury</u> , we <b>conditionally</b><br><b>recommend</b> resuscitative Emergency Department thoracotomy. <b>Conditional Recommendation</b> |
| PICO #3  | In patients who present pulseless to the Emergency Department with signs of life after penetrating extra-thoracic injury, we conditionally recommend resuscitative Emergency Department thoracotomy. Conditional Recommendation                                     |
| PICO #4  | In patients who present pulseless to the Emergency Department without signs of life after penetrating extra-thoracic injury, we conditionally recommend resuscitative Emergency Department thoracotomy. <sup>1</sup> Conditional Recommendation                     |
| PICO #5  | In patients who present pulseless to the Emergency Department with signs of life after blunt injury, we conditionally recommend resuscitative Emergency Department thoracotomy. Conditional Recommendation                                                          |
| PICO #6  | In patients who present pulseless to the Emergency Department <u>without signs of life</u> after <u>blunt injury</u> , we <b>conditionally recommend</b> <u>against</u> resuscitative Emergency Department thoracotomy. <sup>2</sup> Conditional Recommendation     |



# **Direct to OR**


Performance of the primary and secondary surveys and ongoing resuscitation with the ability to convert to immediate surgical or other invasive procedural interventions.

### **Initial assessment + Resuscitation + Surgical procedure**



### **Cardiac Box**





Journal of Trauma and Acute Care Surgery83(3):349-355, September 2017



2021 AAST PODIUM PAPER

### Direct to OR resuscitation of abdominal trauma: An NTDB propensity matched outcomes study

Theodore E. Habarth-Morales, BS, Arturo J. Rios-Diaz, MD, Stephen P. Gadomski, MD, Tiffani Stanley, BA, Julie P. Donnelly, MSN, RN, TCRN, George J. Koenig, Jr, DO, Murray J. Cohen, MD, and Joshua A. Marks, MD, Philadelphia, Pennsylvania

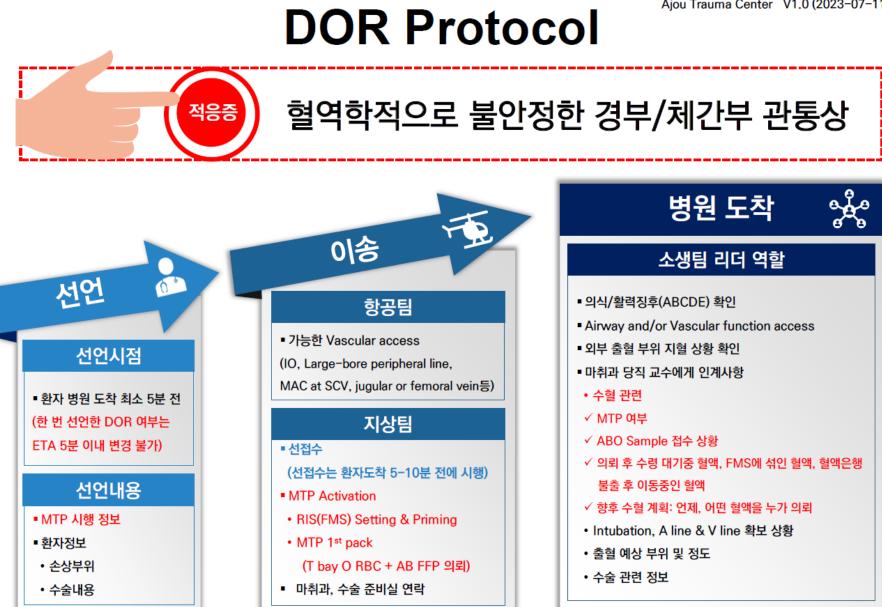
### TABLE 1. EDOR Triage Criteria for Patients Presenting to Our ED

Penetrating injuries of the neck, chest, abdomen, or pelvis

Cardiopulmonary arrest

Profound shock

Amputation (traumatic, proximal to elbow or knee)


Impaled objects in neck, chest, abdomen, or pelvis

Open chest or abdominal wound (evisceration of abdominal contents)

이 4후대 1학 '페 의 글 원 \ Alon Juiversity Modical Contor



Ajou Trauma Center V1.0 (2023-07-11)





# **Urgent Thoracotomy**

- An urgent thoracotomy is one that takes place under more controlled circumstances and in the context of appropriate physiological stability and hitherto successful resuscitation.
- An urgent thoracotomy is performed minutes to hours after injury to control and manage a potential lifethreatening condition or prevent the development of further deterioration, injury or infection.



# **Traditional Criteria**

- More than 1,500 mL of blood immediately evacuated by tube thoracostomy.
- Persistent bleeding from the chest, defined as 200 mL/h for 2 hours to 4 hours.
- Persistent blood transfusion is required to maintain hemodynamic stability.
- Patient's physiologic status and whether the chest is completely evacuated of blood.



THE JOURNAL OF TRAUMA Copyright © 1977 by The Williams & Wilkins Co.

Vol. 17, No. 7 Printed in U.S.A.

#### INDICATIONS FOR THORACOTOMY FOLLOWING PENETRATING THORACIC INJURY

### ROGER SIEMENS, M.D., HIRAM C. POLK, JR., M.D., LAMAN A. GRAY, JR., M.D., AND ROBERT L. FULTON, M.D.

From the Department of Surgery, and the Price Institute of Surgical Research, the University of Louisville School of Medicine, Health Sciences Center, Louisville, Kentucky

The treatment of penetrating thoracic injuries has been reviewed in both civilian and military series. Although most surgeons agree that closed thoracostomy drainage is the initial treatment of choice, the timing of early thoracotomy and perhaps cardiorrhaphy upon patients with penetrating thoracic injuries remains controversial. The purpose of this study was to determine which patients will require immediate thoracotomy or cardiorrhaphy following penetrating chest injury.

Over a two-year period 190 patients with penetrating thoracic injuries were treated. Of 53 patients who required immediate thoracotomy, 31 suffered cardiac wounds. Seventy-nine patients required laparotomy for associated intra-abdominal injuries. The mortality rate was related to exsanguinating hemorrhage or postoperative intra-abdominal sepsis. Cardiopulmonary complications were rare in the absence of intra-abdominal sepsis and could not be attributed to the thoracic injury or thoracotomy. Indications for immediate cardiorrhaphy or thoracotomy are: 1) location of the entrance wound (70% in upper mediastinum); 2) blood pressure on admission <90; 3) initial thoracostomy blood loss >800 cc; 4) radiographic evidence of retained hemothorax; and/or 5) clinical evidence of pericardial tamponade.

|                                  |               |                | Treatment Groups |               |
|----------------------------------|---------------|----------------|------------------|---------------|
|                                  | Totals        | Thoracostomy   | Cardiorrhaphy    | Thoractomy    |
| Number of patients               | 190           | 137            | 31               | 22            |
| Weapon:                          |               |                |                  |               |
| Gun                              | 71%           | 74%            | 55%              | 77%           |
| Knife                            | 23%           | 20%            | 35%              | 14%           |
| Shotgun                          | 6%            | 6%             | 10%              | 9%            |
| Patients with multiple wounds    | 42%           | 50%            | 23%              | 18%           |
| Admitting blood pressure:        |               |                |                  |               |
| less than 90 Hg                  | 37%           | 26%            | 71%              | 55%           |
| average $(\pm S.D.)$             | $94 (\pm 44)$ | $106 (\pm 37)$ | $61 (\pm 48)$    | $75 (\pm 42)$ |
| Initial thoracostomy blood loss: |               |                |                  |               |
| less than 500 ml                 | 77%           | 83%            | 74%              | 32%           |
| 500–1,000 ml                     | 13%           | 10%            | 16%              | 23%           |
| more than 1,000 ml               | 10%           | 7%             | 10%              | 45%           |
| Clinical cardiac tamponade       | 12%           | 0%             | 70%              | 0%            |

ד החתעד

Patient Data Base

Original Communications

### Operative management of penetrating wounds of the chest in civilian practice

#### Review of indications in 125 consecutive patients

Although most patients with penetrating chest wounds can be managed successfully with early tube thoracostomy, blood volume replacement, and close observation, the remainder can be saved only by an aggressive operative intervention. Between July, 1972, and June, 1977, 600 patients with penetrating chest wounds were treated at the Martin Luther King, Jr./Drew Medical Center, with an over-all mortality rate of 2.2 percent. One hundred twenty-five patients required thoracotomy. They included 110 male and 15 female subjects with an average age of 29 years. Fifty-four percent had stab wounds and 46 percent gunshot wounds. On admission 92 percent were in shock. Hemothorax was the most common x-ray finding, being significant (average 1,200 ml.) in 88 percent. Fourteen patients (11 percent) had cardiac arrest before reaching the hospital. They underwent immediate thoracotomy in the emergency room, and two survived. Eighty-five percent of the deaths were due to severe cardiac wounds. Ninety-nine patients (79 percent) underwent early thoracotomy (within 24 hours), with only one death: 92 percent were operated upon within 2 hours of admission. Persistent hemorrhage was the indication in 60 percent. There were no deaths among the 24 patients with cardiac wounds who reached the operating room alive or among the 26 patients who underwent both thoracotomy and exploratory laparotomy. Other indications for early thoracotomy included pulmonary and hilar wounds and perforations of the esophagus, trachea, and major bronchi. Late thoracotomy (after 24 hours) was required in 12 patients. The indications included significant clotted hemothorax in nine, infected hemothorax in one, and subclavian arteriovenous fistula in two patients. All survived. The over-all mortality rate was 10.4 percent, but less than 1.0 percent for the 111 patients who reached us alive. The over-all complication rate was 7 percent, and the average period of hospitalization was 11.8 days.

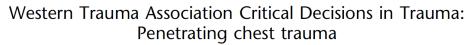
Sonny S. Oparah, M.D., and Ashis K. Mandal, M.D., Los Angeles, Calif.

**Table V.** Indications for early thoracotomy in 99 patients with penetrating chest wounds

| Indications                         | No. of patients | No. of<br>deaths |
|-------------------------------------|-----------------|------------------|
| Persistent hemorrhage               | 59              | 1                |
| Cardiac wounds                      | 24              | 0                |
| Axillary-subclavian arterial injury | 10              | 0                |
| Perforation of esophagus            | 3               | 0                |
| Laceration of tracheobronchial tree | 3               | 0                |
| Totals                              | 99              | 1                |

were operated upon within 2 hours of admission. Persistent hemorrhage was the indication for thoracotomy in 59.6 percent of the patients. The rate of bleeding considered significant was 150 ml. per hour or more, usually for 4 consecutive hours, Lacerations of the internal mammary, intercostal, and subclavian arteries as well as major pulmonary and hilar structures were re-




### Hemothorax

- More than 1,500 mL of blood immediately evacuated by tube thoracostomy.
- Persistent bleeding from the chest, defined as 200 mL/h for 2 hours to 4 hours.

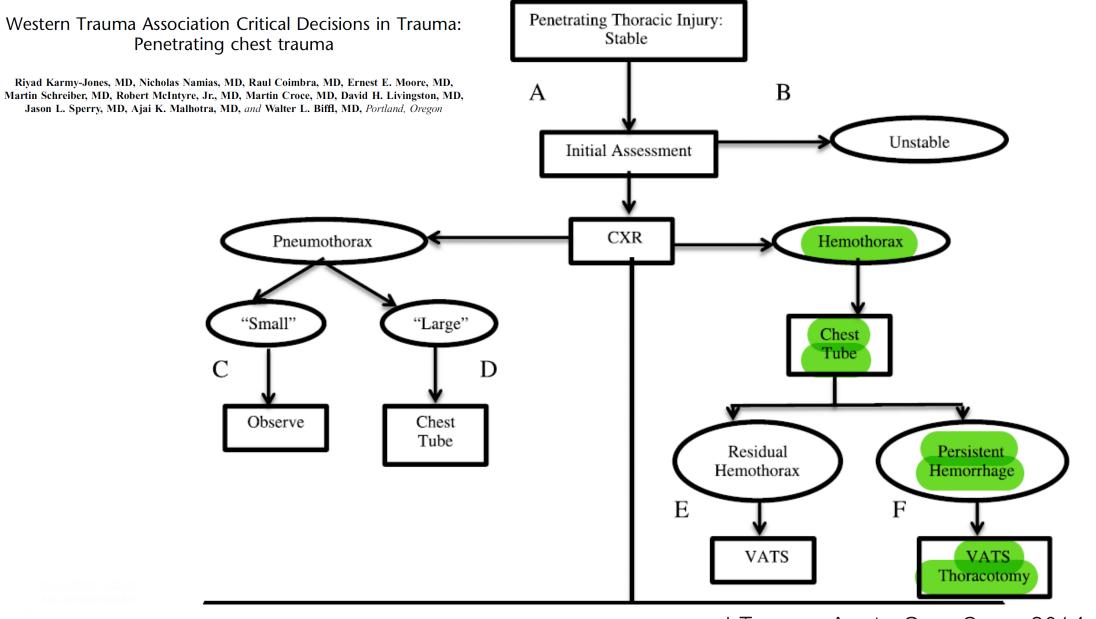

=> This Concept was largely derived from observations made in the early 1970s based on experience predominantly with penetrating injuries.

#### WTA 2014 ALGORITHM

아주대학교의료원 Ajou University Medical Center



Riyad Karmy-Jones, MD, Nicholas Namias, MD, Raul Coimbra, MD, Ernest E. Moore, MD, Martin Schreiber, MD, Robert McIntyre, Jr., MD, Martin Croce, MD, David H. Livingston, MD, Jason L. Sperry, MD, Ajai K. Malhotra, MD, and Walter L. Biffl, MD, Portland, Oregon




 $D_{1}$ 

Chi 25 데i 핵· 10 의 교 첼 Ajou Tutversty Modeel Center

#### WTA 2014 ALGORITHM





J Trauma Acute Care Surg. 2014



### **Blunt trauma?**

# Blunt ≠ Penetrating

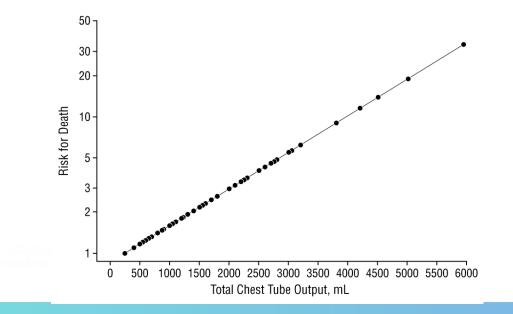
# Only chest tube drainage?

### May 2001



### Timing of Urgent Thoracotomy for Hemorrhage After Trauma

### A Multicenter Study


Riyad Karmy-Jones, MD; Gregory J. Jurkovich, MD; Avery B. Nathens, MD; et al

» Author Affiliations | Article Information

Arch Surg. 2001;136(5):513-518. doi:10.1001/archsurg.136.5.513

### Table 1. Incidence of Primary Factors That Prompted Thoracotomy Owing to Evidence of Thoracic Hemorrhage\*

| Injury      | Massive<br>Hemothorax on<br>Chest x-Ray Film | Initial Chest<br>Tube Output | Ongoing Chest<br>Tube Output | Total |
|-------------|----------------------------------------------|------------------------------|------------------------------|-------|
| Blunt       | 6                                            | 13                           | 17                           | 36    |
| Penetrating | 21                                           | 61                           | 39                           | 121   |



The risk for death if CT-total exceeded 1500 mL before thoracotomy was 3.2 times greater than with CT-total of 500 mL or less.

Based on this increase in mortality after a CT-total of 1500 mL, it may be worthwhile to consider thoracotomy in patients who have CT-total of greater than 1500 mL in the first 24 hours of admission, even if there is no evidence of shock.



### Practice Management Guidelines for Management of Hemothorax and Occult Pneumothorax

Nathan T. Mowery, MD, Oliver L. Gunter, MD, Bryan R. Collier, DO, Jose' J. Diaz, Jr., MD, Elliott Haut, MD, Amy Hildreth, MD, Michelle Holevar, MD, John Mayberry, MD, and Erik Streib, MD

### Management of Massive Hemothorax

- 1. Patient physiology should be the primary indications for surgical intervention rather than absolute numbers of initial or persistent output (Level 2).
- 1500 mL via a chest tube in any 24-hour period regardless of mechanism should prompt consideration for surgical exploration (Level II).

J Trauma. 2011 Feb:70(2):510-8

#### **Original Article**

### Thoracotomy for blunt chest trauma: is chest tube output a useful criterion?

Yasuaki Mizushima, Shota Nakao, Hiroaki Watanabe, and Tetsuya Matsuoka

Senshu Trauma and Critical Care Medical Center, Rinku General Medical Center, Osaka, Japan

When the source of hemorrhage was believed to be the thoracic cavity, thoracotomy was performed regardless of chest tube output.

|                            | Thoracotomy ( $n = 24$ ) | Non-thoracotomy ( $n = 93$ ) | Р     |
|----------------------------|--------------------------|------------------------------|-------|
| Age (years)                | 51.3 ± 23.7              | 46.6 ± 20.1                  | NS    |
| Sex (% male)               | 75%                      | 72%                          | NS    |
| Thoracic AIS               | 4.3 ± 0.7                | $4.0 \pm 0.7$                | NS    |
| ISS                        | 35.2 ± 9.6               | 33.1 ± 13.1                  | NS    |
| TRISS                      | 0.53 ± 0.34              | 0.73 ± 0.31                  | < 0.0 |
| 1-h chest tube output (mL) | 708.0 ± 258.3            | 108.9 ± 222.9                | < 0.0 |
| Mortality (%)              | 58.3% (n = 14)           | 14.0% (n = 13)               | < 0.0 |

Table 1. Patient characteristics and 1-h chest tube outputs of patients who underwent thoracotomy for hemorrhage and those who

AIS, Abbreviated Injury Scale; ISS, Injury Severity Score; NS, not significant; TRISS, Trauma-Related Severity Injury Score.

**Results:** Data were available for 24 patients who underwent thoracotomy for hemorrhage and 93 patients who did not undergo thoracotomy. The 1-h chest tube output between the groups was significantly different (708.0  $\pm$  258.3 mL versus 108.9  $\pm$  222.9 mL). Receiver operating characteristic curve analysis of the predictive value of 1-h chest tube output for thoracotomy was conducted. The area under the receiver operating characteristic curve was 0.98, and the cutoff 1-h chest tube output value for predicting thoracotomy was 404 mL (sensitivity, 87.5%; specificity, 96.8%).

**Conclusions:** (The 1-h chest tube output of patients who underwent thoracotomy was lower than the thresholds traditionally reported as indications for urgent thoracotomy. High chest tube output as a traditional indicator for thoracotomy may not apply to patients with blunt chest trauma.







#### Article Blunt Chest Trauma in Polytraumatized Patients: Predictive Factors for Urgent Thoracotomy

Josef Stolberg-Stolberg <sup>1,\*</sup>, Jan Christoph Katthagen <sup>1</sup>, Thomas Hillemeyer <sup>2</sup>, Karsten Wiebe <sup>3</sup>, Jeanette Koeppe <sup>4</sup> and Michael J. Raschke <sup>1</sup>

pattern, thoracotomy, and mortality were retrospectively analysed. Results: 235 polytraumatized patients were included. Patients that received urgent thoracotomy (UT, n = 10) showed a higher mean chest-tube output within 24 h with a median (Mdn) of 3865 (IQR 2423–5156) mL compared to the group with no additional thoracic surgery (NT, n = 225) with Mdn 185 (IQR 50–463) mL (p < 0.001). The cut-off 24-h chest-tube output value for recommended thoracotomy was 1270 mL (ROC-Curve). UT showed an initial haemoglobin of Mdn 11.7 (IQR 9.2–14.3) g/dL and an INR value of Mdn 1.27 (IQR 1.11–1.69) as opposed to Mdn 12.3 (IQR 10–13.9) g/dL and Mdn 1.13 (IQR 1.05–1.34) in NT (haemoglobin: p = 0.786; INR: p = 0.215). There was an average number of 7.1(±3.4) rib fractures in UT and 6.7(±4.8) in NT (p = 0.649). Conclusions: Chest-tube output remains the single most important predictive factor for urgent thoracotomy also after blunt chest trauma. Patients with a chest-tube output of more than 1300 mL within 24 h after trauma should be considered for transfer to a level I trauma centre with standby thoracic surgery.

J. Clin. Med. 2021, 10, 3843.

#### Injury 52 (2021) 225-230



Contents lists available at ScienceDirect



Is massive hemothorax still an absolute indication for operation in blunt trauma?

Jen-Fu Huang, Chih-Po Hsu, Chih-Yuan Fu\*, Chun-Hsiang Ou Yang, Chi-Tung Cheng, Chien-Hung Liao, I-Ming Kuo, Chi-Hsun Hsieh

Division of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, 5 Fu-Xing Street, Guishan District, Taoyuan City, Taiwan

The inclusion criterion was a chest tube drainage amount that met the MHT criteria.

Therapeutic operations were defined as those involving surgical haemostasis; otherwise, operations were considered nontherapeutic.

The non-therapeutic operation group included the patients who received nonoperative management.



#### Table 1

Comparisons between blunt trauma patients with massive haemothorax who underwent therapeutic and non-therapeutic operations.

아주대학교의료원

Ajou University Medical Cente

|                                                         | Therapeutic operation $(N = 27)$ | Non-therapeutic operation ( $N = 17$ ) | p-value                                  |
|---------------------------------------------------------|----------------------------------|----------------------------------------|------------------------------------------|
| General Demographics                                    |                                  |                                        |                                          |
| Age (years)                                             | 47.0 (26.0, 55.0)                | 47.0 (29.5, 66.5)                      | 0.547 <sup>d</sup>                       |
| Sex                                                     |                                  |                                        | 1.000 <sup>e</sup>                       |
| Female                                                  | 5 (19%)                          | 3 (18%)                                |                                          |
| Male                                                    | 22 (81%)                         | 14 (82%)                               |                                          |
| Condition at Emergency Department                       |                                  |                                        |                                          |
| Body Temperature ( °C)                                  | 35.9 (35.0, 36.7)                | 36.5 (35.7, 37.0)                      | 0.125 <sup>d</sup>                       |
| Pulse Rate (bpm)                                        | (125.0 (111.0, 135.0))           | (116.0 (84.0, 121.0))                  | 0.013 <sup>d</sup>                       |
| Respiration Rate (per minute)                           | 24.0 (19.0, 25.0)                | 21.0 (20.0, 22.0)                      | 0.226 <sup>d</sup>                       |
| SBP on Arrival (mmHg)                                   | 110.0 (78.0, 142.0)              | 124.0 (109.0, 143.5)                   | 0.263 <sup>d</sup>                       |
| SBP after Resuscitation (mmHg)                          | (106.0 (84.0, 127.0)<br>8 (20%)  | (121.0 (116.0, 134.0)<br>2 (12%)       | 0.040 <sup>d</sup>                       |
| SBP <90 mmHg (N)<br>SBP <90 mmHg Post-resuscitation (N) | 8 (30%)                          | 2 (12%)<br>0 (0%)                      | 0.314 <sup>e</sup><br>0.014 <sup>e</sup> |
| Chest Tube Amount                                       | 9 (33%)                          | 0 (0%)                                 | 0.014                                    |
| 1500 ml STAT (N)                                        | 6 (22%)                          | 7 (41%)                                | 0.316 <sup>e</sup>                       |
| 200 ml/hr for 2-4 H (N)                                 | 22 (81%)                         | 12 (71%)                               | 0.632 <sup>e</sup>                       |
| Laboratory Data and Exam                                | 22 (01%)                         | 12 (713)                               | 0.052                                    |
| Haemoglobin (mg/dl)                                     | 9.9 (7.4, 13.3)                  | 9.6 (8.7, 11.6)                        | 0.716 <sup>d</sup>                       |
| INR                                                     | 1.3 (1.1, 1.7)                   | 1.2 (1.1, 1.4)                         | 0.168 <sup>d</sup>                       |
| pH <sup>b</sup>                                         | 7.2 (7.2, 7.3)                   | 7.4 (7.3, 7.4)                         | 0.002 <sup>d</sup>                       |
| HCO <sub>3</sub> (mEq/L) <sup>b</sup>                   | 17.8 (14.6, 21.5)                | 21.4 (17.0, 21.5)                      | 0.038 <sup>d</sup>                       |
| Base Excess (mEq/L) <sup>b</sup>                        | -9.1 (-13.4, -4.5)               | -3.8 (-10.1, -0.7)                     | 0.028 <sup>d</sup>                       |
| Lactate (mmol/L) <sup>c</sup>                           | 5.7 (3.3, 7.8)                   | (1.8 (1.7, 2.8))                       | 0.002 <sup>d</sup>                       |
| Lactate > 2.2 mmol/L (N) <sup>o</sup>                   | 20 (100%)                        | (1 (25%))                              | 0.004 <sup>e</sup>                       |
| Blood Transfusions                                      |                                  |                                        |                                          |
| PRBC and WB (unit)                                      | 18.0 (10.0, 42.0)                | 6.0 (3.0, 19.0)                        | 0.005 <sup>d</sup>                       |
| FFP (unit)                                              | (10.0 (4.0, 42.0))               | 2.0 (0, 15.0)                          | 0.003 <sup>d</sup>                       |
| Severity and Outcomes                                   | 20 (24 24)                       | 20 (12 40)                             | 0.4074                                   |
| ISS                                                     | 29 (24, 34)                      | 29 (13, 40)                            | 0.437 <sup>d</sup>                       |
| Hospital Stay (days)<br>Mortality (N)                   | 16.0 (7.0, 35.0)<br>7 (26%)      | 16.0 (10.0, 21.0)<br>1 (6%)            | 0.807 <sup>d</sup><br>0.196 <sup>e</sup> |
| wortanty (W)                                            | / (20%)                          | 1 (0%)                                 | 0.150                                    |



#### Table 2

Subgroup analysis of blunt trauma patients with massive haemothorax with stable haemodynamics who underwent therapeutic and non-therapeutic operations. (N = 35).

|                                       | Therapeutic operaton $(N = 18)$ | Non-therapeutic operation ( $N = 17$ ) | p-valu             |
|---------------------------------------|---------------------------------|----------------------------------------|--------------------|
| General Demographics                  |                                 |                                        |                    |
| Age (years)                           | 47.0 (24.8, 66.5)               | 47.0 (29.5, 66.5)                      | 0.619 <sup>d</sup> |
| Sex (N)                               |                                 |                                        | 0.944 <sup>e</sup> |
| Female                                | 2 (11%)                         | 3 (18%)                                |                    |
| Male                                  | 16 (89%)                        | 14 (82%)                               |                    |
| Condition at Emergency Department     | I                               |                                        |                    |
| Body Temperature ( °C)                | 35.9 (35.0, 36.8)               | 36.5 (35.7, 37.0)                      | 0.254              |
| Pulse Rate (bpm)                      | (126.0 (115.5, 136.3))          | 116.0 (84.0, 121.0)                    | 0.007              |
| Respiration Rate (per minute)         | 23.0 (19.0, 26.3)               | 21.0 (20.0, 22.0)                      | 0.280              |
| SBP on Arrival (mmHg)                 | 110.0 (73.0, 145.5)             | 124.0 (109.0, 143.5)                   | 0.322              |
| SBP after Resuscitation (mmHg)        | 122.5 (105.0, 145.8)            | 121.0 (116.0, 134.0)                   | 0.788              |
| Chest Tube Amount                     |                                 |                                        |                    |
| 1500 ml STAT (N)                      | 4 (22%)                         | 7 (41%)                                | 0.400              |
| 200 ml/hr for 2-4 H (N)               | 15 (83%)                        | 12 (71%)                               | 0.622              |
| Laboratory Data and Exam              |                                 |                                        |                    |
| Haemoglobin (mg/dl)                   | 10.8 (7.9, 13.3)                | 9.6 (8.7, 11.6)                        | 0.391              |
| INR                                   | 1.3 (1.1, 1.7)                  | 1.2 (1.1, 1.4)                         | 0.254              |
| pH <sup>b</sup>                       | 7.2 (7.2, 7.4)                  | 7.4 (7.3, 7.4)                         | 0.011              |
| HCO <sub>3</sub> (mEq/L) <sup>b</sup> | 17.0 (14.6, 21.7)               | 21.4 (17.0, 24.5)                      | 0.099              |
| Base Excess (mEq/L) <sup>b</sup>      | -9.9 (-13.4, -4.0)              | -3.8 (-10.1, -0.7)                     | 0.070              |
| Lactate (mmol/L) <sup>c</sup>         | 5.0 (3.0, 7.3)                  | 1.8 (1.7, 2.8)                         | 0.006              |
| Lactate ᠵ 2.2 mmol/L (N) <sup>o</sup> | (13 (100%))                     | 1 (25%)                                | 0.012              |
| Blood Transfusion                     |                                 |                                        |                    |
| PRBC and WB (unit)                    | (18.0 (10.0, 36.5))             | 6.0 (3.0, 19.0)                        | 0.007              |
| Fresh Frozen Plasma (unit)            | 9.0 (5.5, 27.0)                 | 2.0 (0, 15.0)                          | 0.008              |
| Severity and Outcomes                 |                                 |                                        |                    |
| ISS                                   | 29.0 (21.5, 32.3)               | 29 (13, 40)                            | 0.863              |
| Hospital Stay (days)                  | 14.5 (7.0, 36.5)                | 16.0 (10.0, 21.0)                      | 0.877              |
| Mortality (N)                         | 3 (17%)                         | 1 (6%)                                 | 0.646              |

#### Table 3

Subgroup analysis for patients with hourly chest tube amounts over 200 ml for 2 to 4 H and comparisons between those who underwent therapeutic and non-therapeutic operations. (N = 34).

|                                       | Therapeutic operation $(N = 22)$ | Non-therapeutic operation $(N = 12)$ | p-value            |
|---------------------------------------|----------------------------------|--------------------------------------|--------------------|
| General Demographics                  |                                  |                                      |                    |
| Age (years)                           | 46.0 (25.5, 55.0)                | 41.0 (22.3, 67.8)                    | 0.676 <sup>d</sup> |
| Sex                                   |                                  |                                      | 1.000 <sup>e</sup> |
| Female                                | 5 (23%)                          | 2 (17%)                              |                    |
| Male                                  | 17 (77%)                         | 10 (83%)                             |                    |
| Condition at Emergency Department     |                                  |                                      |                    |
| Body Temperature ( °C)                | 35.9 (35.0, 36.3)                | 36.6 (35.1, 37.2)                    | 0.200 <sup>d</sup> |
| Pulse Rate (bpm)                      | 123.5 (113.0, 136.3)             | 116.5 (86.3, 119.8)                  | 0.027 <sup>d</sup> |
| Respiration Rate (per minute)         | 23.0 (18.8, 26.0)                | 21.5 (20.0, 22.0)                    | 0.458 <sup>d</sup> |
| SBP on Arrival (mmHg)                 | 109.5 (86.3, 135.5)              | 121.0 (103.3, 127.5)                 | 0.689 <sup>d</sup> |
| SBP after Resuscitation (mmHg)        | 106.5 (84.8, 128.5)              | 122.0 (114.8, 136.8)                 | 0.073 <sup>d</sup> |
| SBP <90 mmHg on Arrival (N)           | 6 (27%)                          | 2 (17%)                              | 0.804 <sup>e</sup> |
| SBP <90 mmHg Post-resuscitation (N)   | 7 (32%)                          | 0 (0%)                               | 0.064 <sup>e</sup> |
| Laboratory Data and Exam              |                                  |                                      |                    |
| Haemoglobin (mg/dl)                   | 10.7 (7.3, 13.3)                 | 9.5 (8.5, 12.4)                      | 0.824 <sup>d</sup> |
| INR                                   | 1.5 (1.1, 1.9)                   | 1.3 (1.2, 1.6)                       | 0.456 <sup>d</sup> |
| pH <sup>b</sup>                       | 7.2 (7.1, 7.3)                   | 7.4 (7.3, 7.4)                       | 0.002 <sup>d</sup> |
| HCO <sub>3</sub> (mEq/L) <sup>b</sup> | 16.1 (12.9, 19.0)                | 20.2 (15.3, 24.4)                    | 0.112 <sup>d</sup> |
| Base Excess (mEq/L) <sup>b</sup>      | -10.7 (-14.3, -6.8)              | -5.0 (-11.9, -1.2)                   | 0.069 <sup>d</sup> |
| Lactate (mmol/L) <sup>c</sup>         | 6.0 (3.5, 7.8)                   | 1.8 (1.7, 2.8)                       | 0.002 <sup>d</sup> |
| Lactate > 2.2 mmol/L (N) <sup>c</sup> | 17 (100%)                        | 1 (25%)                              | 0.006 <sup>d</sup> |
| Blood Transfusions                    |                                  |                                      |                    |
| PRBC and WB (unit)                    | 19.0 (11.5, 39.0)                | 9.0 (4.5, 23.5)                      | 0.075 <sup>d</sup> |
| FFP (unit)                            | 13.0 (4.0, 42.0)                 | 3.0 (0, 18.5)                        | 0.032 <sup>d</sup> |
| Severity and Outcomes                 |                                  |                                      |                    |
| ISS                                   | 29 (24, 34)                      | 29 (12, 45)                          | 0.673 <sup>d</sup> |
| Hospital Stay (days)                  | 13.5 (6.0, 35.8)                 | 16.0 (11.0, 29.5)                    | 0.637 <sup>d</sup> |
| Mortality (N)                         | 6 (27%)                          | 1 (8%)                               | 0.396 <sup>e</sup> |

이) 옥두대] 핵( 10) 핵 등 ½ Ajou Juévesity Medical Center

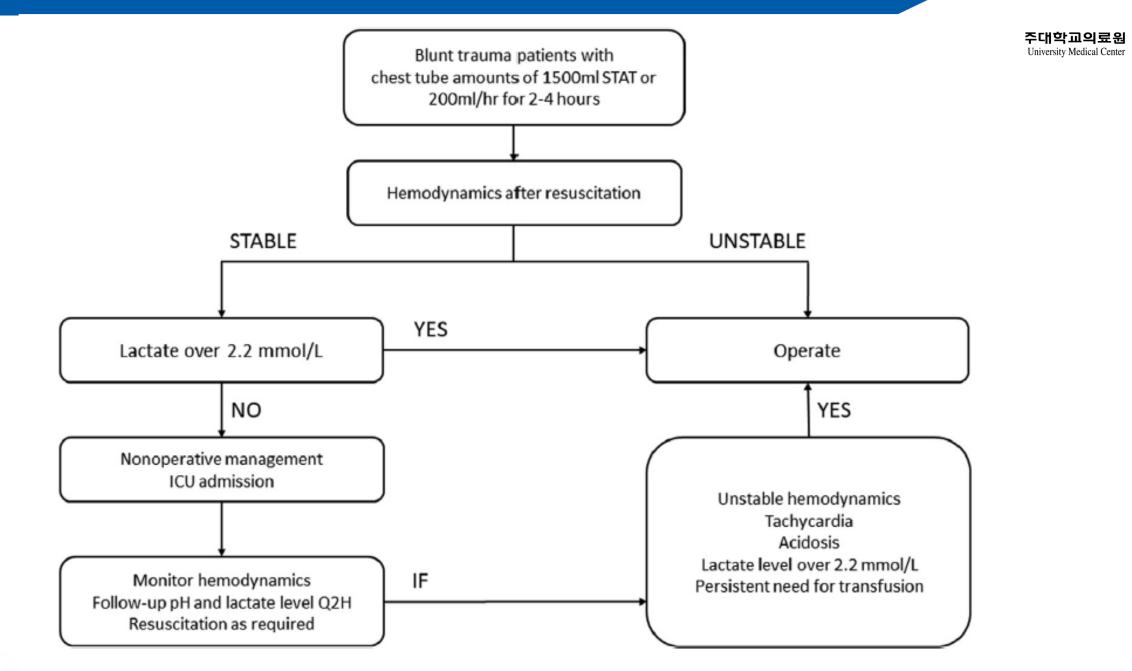



Fig. 1. Treatment algorithm for blunt trauma patients with massive hemothorax.



# **Blunt Chest Trauma**

 Urgent thoracotomy for blunt trauma is rarely justified on the basis of chest tube output alone.

✓ Physiology

✓ Refractory shock & Coagulopathy

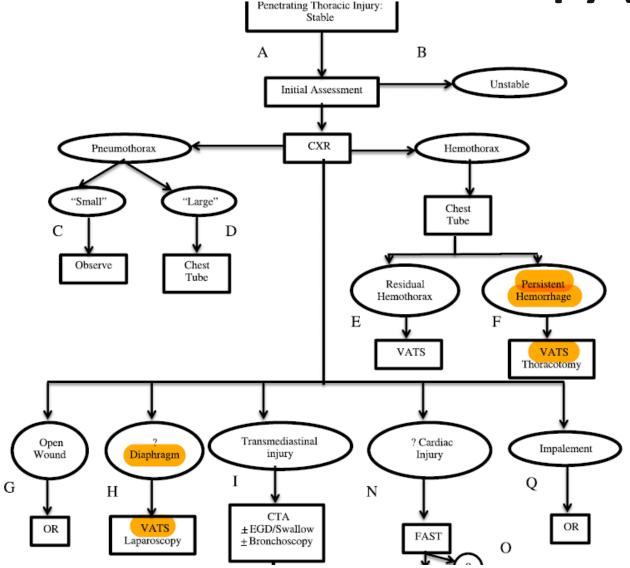
✓Clearly identified injuries of thorax

✓Combined injuries

# Video-Assisted Thoracoscopy (VATS)



VATS is now widely accepted as a safe and effective procedure for the diagnosis and treatment of a multitude of blunt and penetrating chest injuries.


- Diagnostic video-assisted thoracoscopic surgery
- Diaphragm Injury
- Transmediastinal and precordial injuries

### Persistent thoracic hemorrhage

- VATS is useful for patients with significant bleeding who do not meet the criteria for massive hemothorax and are hemodynamically stable.
- Several studies have demonstrated a success rate of up to 80% using VATS to control intrathoracic bleeding
- > Persistent bleeding from the chest arises from intercostal vessels or lung lacerations.
- Hemostasis can be achieved thoracoscopically using cautery, endoclips, direct pressure or endovascular stapling devices.
  Curr Opin Crit Care, 2006 Dec;12

### Video-Assisted Thoracoscopy (VATS)





tube output can lead to an underestimation of the injury severity.<sup>33</sup> In stable patients in whom the blood loss seems to be "slowing," VATS may be an option. Intercostal bleeding can be controlled with clips, lung bleeding with wedge resection, and diaphragm laceration with suture repair.

J Trauma Acute Care Surg. 2014

#### A comparison of Video-Assisted Thoracoscopic Surgery with Open Thoracotomy for the Management of Chest Trauma: A Systematic Review and Meta-analysis

Na Wu · Long Wu · Chongying Qiu · Zubin Yu · Ying Xiang · Minghao Wang · Jun Jiang • Yafei Li

World J Surg (2015) 39:940–952

| Huang <sup>a</sup><br>[48] | 2012 | China     | Traumatic<br>diaphragmatic hernia                                      | Repair of diaphragmatic<br>laceration                                                                                                                | Cohort | VATS | Thoracotomy | 23  | 27 |
|----------------------------|------|-----------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------------|-----|----|
| Lu [43]                    | 2013 | China     | Clotted hemothoraces                                                   | Evacuation of hemothorax,<br>hemostasis of bleeders                                                                                                  | Cohort | VATS | Thoracotomy | 35  | 33 |
| Hu [40]                    | 2009 | China     | Hemothoraces                                                           | Evacuation of hemothorax,<br>decortication and drainage                                                                                              | RCT    | VATS | Thoracotomy | 58  | 58 |
| Liu [38]                   | 2012 | China     | Pneumothorax and<br>hemothorax                                         | Evacuation of hemothorax,<br>hemostasis of bleeders,<br>repair of lung laceration,<br>decortication of empyema                                       | Cohort | VATS | Thoracotomy | 62  | 62 |
| Li [ <mark>36</mark> ]     | 2012 | China     | Pneumothorax and hemothorax                                            | Evacuation of hemothorax,<br>hemostasis of bleeders,<br>repair of lung and<br>diaphragmatic laceration                                               | RCT    | VAMT | Thoracotomy | 30  | 32 |
| Yu [45]                    | 2012 | China     | Pneumothorax and hemothorax                                            | Hemostasis of bleeders, repair<br>of lung and diaphragmatic<br>laceration, widen pericardial<br>lacerations                                          | Cohort | VATS | Thoracotomy | 21  | 35 |
| Xie [34]                   | 2009 | China     | Lung contusion,<br>intercostal bleeders                                | Evacuation of hemothorax,<br>hemostasis of bleeders,<br>repair of lung and<br>diaphragmatic laceration                                               | Cohort | VAMT | Thoracotomy | 29  | 31 |
| Cao [32]                   | 2011 | China     | Lung contusion,<br>intercostal bleeders,<br>thoracoabdominal<br>trauma | Evacuation of hemothorax,<br>hemostasis of bleeders,<br>repair of lung and<br>diaphragmatic laceration                                               | RCT    | VAMT | Thoracotomy | 63  | 63 |
| Li [47]                    | 2012 | China     | Hemothoraces                                                           | Evacuation of hemothorax,<br>hemostasis of bleeders,<br>control air leak                                                                             | Cohort | VATS | Thoracotomy | 40  | 40 |
| Peng [28]                  | 2008 | China     | Lung contusion,<br>diaphragmatic<br>laceration                         | Evacuation of hemothorax,<br>hemostasis of bleeders,<br>repair of lung and<br>diaphragmatic laceration                                               | RCT    | VATS | Thoracotomy | 38  | 38 |
| Wang [44]                  | 2011 | China     | Pneumothorax and<br>hemothorax                                         | Evacuation of hemothorax,<br>hemostasis of bleeders,<br>repair of lung and<br>diaphragmatic laceration,<br>wedge lung resection, control<br>air leak | Cohort | VATS | Thoracotomy | 105 | 95 |
| Samiatina<br>[49]          | 2004 | Lithuania | Open chest trauma (no description in detail)                           | repair of diaphragmatic<br>laceration, control air leak                                                                                              | Cohort | VATS | Thoracotomy | 33  | 88 |



| [33]                       | 2008 | China  | contusion,<br>diaphragmatic<br>laceration,<br>diaphragmatic hernia                                                       | lung and diaphragmatic<br>laceration                                                                                                         | Conort | VAIS | Inoracotomy | 57 | 33 |
|----------------------------|------|--------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------------|----|----|
| Ben-<br>Nun<br>[17]        | 2007 | Israel | Chest trauma (no<br>description in detail)                                                                               | Hemostasis of bleeders, repair of<br>lung and diaphragmatic<br>laceration, wedge lung<br>resection                                           | Cohort | VATS | Thoracotomy | 37 | 40 |
| Long<br>[25]               | 2010 | China  | Lung laceration,<br>intercostal bleeders                                                                                 | Hemostasis of bleeders, repair of<br>lung laceration                                                                                         | RCT    | VAMT | Thoracotomy | 29 | 31 |
| Li F<br>[27]               | 2009 | China  | Clotted hemothorax, lung<br>laceration, intercostal<br>bleeders, pericardial<br>bleeding                                 | Repair of lung and<br>diaphragmatic laceration,<br>evacuation of clotted<br>hemothorax                                                       | RCT    | VATS | Thoracotomy | 53 | 61 |
| Liao<br>[30]               | 2012 | China  | Chest trauma (no<br>description in detail)                                                                               | Evacuation of clotted<br>hemothorax, hemostasis of<br>bleeders, repair of lung and<br>diaphragmatic laceration,<br>fixation of fractured rib | RCT    | VATS | Thoracotomy | 56 | 57 |
| Li <sup>a</sup><br>[29]    | 2008 | China  | Chest trauma (no<br>description in detail)                                                                               | Repair of lung laceration, wedge<br>lung resection, hemostasis of<br>bleeders, removal of foreign<br>body in myocardium                      | RCT    | VATS | Thoracotomy | 40 | 36 |
| Lu<br>[42]                 | 2011 | China  | Hemothoraces                                                                                                             | Evacuation of hemothorax,<br>hemostasis of bleeders, repair<br>of lung and diaphragmatic<br>laceration                                       | Cohort | VATS | Thoracotomy | 20 | 20 |
| Yu<br>[46]                 | 2013 | China  | Pneumothorax and<br>hemothorax                                                                                           | Hemostasis of bleeders, repair of<br>lung laceration                                                                                         | Cohort | VATS | Thoracotomy | 31 | 29 |
| Chen<br>[41]               | 2013 | China  | Pneumothorax and<br>hemothorax                                                                                           | Hemostasis of bleeders, repair of<br>lung and diaphragmatic<br>laceration, wedge lung<br>resection                                           | RCT    | VATS | Thoracotomy | 38 | 38 |
| Jiang <sup>a</sup><br>[26] | 2010 | China  | Chest trauma(no<br>description in detail)                                                                                | -                                                                                                                                            | RCT    | VATS | Thoracotomy | 40 | 36 |
| Yuan<br>[37]               | 2012 | China  | Lung laceration, fractured<br>rib, diaphragmatic<br>laceration                                                           | Hemostasis of bleeders, repair of<br>lung and diaphragmatic<br>laceration                                                                    | Cohort | VAMT | Thoracotomy | 32 | 30 |
| Yang<br>[39]               | 2012 | China  | Hemothorax                                                                                                               | Evacuation of hemothorax,<br>hemostasis of bleeders                                                                                          | Cohort | VATS | Thoracotomy | 28 | 28 |
| Hao<br>[35]                | 2010 | China  | Hemothoraces                                                                                                             | Hemostasis of bleeders, repair of<br>lung laceration, wedge lung<br>resection                                                                | RCT    | VATS | Thoracotomy | 39 | 34 |
| Zhao<br>[31]               | 2010 | China  | Fractured rib, lung<br>contusion,<br>diaphragmatic<br>laceration,<br>diaphragmatic hernia,<br>thoracoabdominal<br>trauma | Hemostasis of bleeders, repair of lung laceration                                                                                            | RCT    | VATS | Thoracotomy | 44 | 43 |

2008 China Fractured rib, lung

Lian



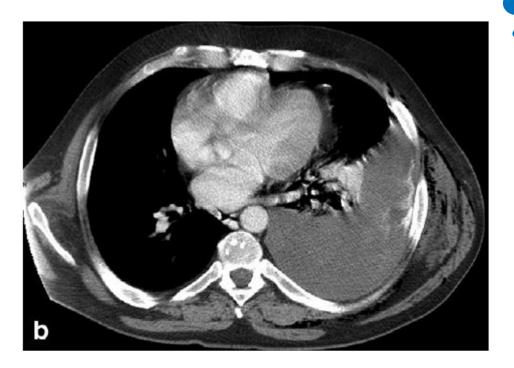
### Video-Assisted Thoracoscopy (VATS)

A comparison of Video-Assisted Thoracoscopic Surgery with Open Thoracotomy for the Management of Chest Trauma: A Systematic Review and Meta-analysis

Na Wu • Long Wu • Chongying Qiu • Zubin Yu • Ying Xiang • Minghao Wang • Jun Jiang • Yafei Li

*Results* (Twenty-six studies) were included. Pooled analyses showed significant reductions in the incidence of postoperative complications (risk ratio [RR] [95 % confidence interval (CI)], 0.47 [0.35, 0.64]), chest tube drainage volume (mean difference [MD] [95 % CI], -146.88 ml [-196.04, -97.72]), duration of tube drainage (MD, -1.71 days; 95 % CI -2.16 to -1.26), duration of hospitalization (MD, -4.67 days; 95 % CI -5.19 to -4.14), operation time (MD, -41.18 min; 95 % CI -52.85 to -29.51), and amount of bleeding (MD, -119.10 ml; 95 % CI -147.28 to -90.92) and transfusion volume (MD, -379.51 ml; 95 % CI -521.24 to -237.77) in chest trauma patients treated with VATS compared with open thoracotomy. The perioperative mortality rate was not significantly different between patients received VATS and open thoracotomy (RR, 0.52; 95 % CI 0.22–1.21). *Conclusions* Compared to open thoracotomy, VATS is an effective and even better treatment for improving perioperative outcomes of hemodynamically stable patients with chest trauma and reduce the complications. However, caution should also be exercised in certain clinical scenarios.

### **Transcatheter Arterial Embolization(TAE)**






- Transcatheter arterial embolization (TAE) is becoming the treatment of choice for hemorrhage in traumatic splenic, hepatic, renal, and pelvic injuries.
- However, there are no guidelines and also limited reports about embolization following traumatic thoracic injury.
- The clinical success rate has been reported to range from 78.9% to 92.6%.

### Indications for Transcatheter Arterial Embolization in Persistent Hemothorax caused by Blunt Trauma

Akiyoshi Hagiwara, MD, Youichi Yanagawa, MD, Naoyuki Kaneko, MD, Akira Takasu, MD, Kousuke Hatanaka, MD, Toshihisa Sakamoto, MD, and Yoshiaki Okada, MD



아주대학교의료원

Ajou University Medical Center

#### Table 2 Comparison Between Thoracic Injuries With ≥200 mL/h and <200 mL/h Blood Loss

| Blood Loss                              | ≥200 mL/h     | <200 mL/h        | р      |
|-----------------------------------------|---------------|------------------|--------|
| Thoracic site (n)                       | 6             | 32               |        |
| Percent volume of the lung injuries (%) | 30 ± 12       | 29 ± 16 (n = 31) | 0.75   |
| Number of rib fractures                 | $5.3 \pm 2.8$ | $3.9 \pm 3.0$    | 0.32   |
| Magnitude of rib fracture displacement  |               |                  |        |
| PD (mm)                                 | 20.4 ± 11.1   | 10.0 ± 9.2       | 0.03   |
| TD (times)                              | $1.9 \pm 0.9$ | $0.9 \pm 0.8$    | 0.02   |
| Contrast extravasation on CECT          |               |                  |        |
| Positive                                | 5             | 0                |        |
| Negative                                | 1             | 32               | < 0.01 |

PD, Parallel displacements; TD, Transverse displacements.

#### **Original Article**



#### Technical results, clinical efficacy and predictors of outcome of intercostal arteries embolization for hemothorax: a two-institutions' experience

Nicola Tamburini<sup>1</sup>, Nicole Carriel<sup>2</sup>, Giorgio Cavallesco<sup>1</sup>, Laureano Molins<sup>2,3</sup>, Roberto Galeotti<sup>4</sup>, Rudith Guzmán<sup>2</sup>, Elisabetta Salviato<sup>4</sup>, David Sánchez-Lorente<sup>2</sup>, Elisa Maietti<sup>5,6</sup>, Pio Maniscalco<sup>1</sup>, Marc Boada<sup>2</sup>

|                     | Table 3 Predictors of technical failure after TAE | Table 3 Predictors of technical failure after TAE |                          |              |                  |  |
|---------------------|---------------------------------------------------|---------------------------------------------------|--------------------------|--------------|------------------|--|
|                     | Variable                                          | No success (n=4)                                  | Technical success (n=26) | P value      |                  |  |
|                     | Age, median [IQR, range]                          | 59.5 [44.5–71.5]                                  | 71 [64–77]               | 0.222        |                  |  |
|                     | Gender M, n (%)                                   | 2 [50]                                            | 20 [77]                  | 0.284        |                  |  |
| Conclusions: IC     | A embolization was fou                            | nd to be a safe a                                 | and effective meth       | od in treati | ng hemothorax    |  |
| caused by active IC | A haemorrhage. <mark>Careful</mark>               | pre-embolization                                  | n evaluation may h       | be required  | for patient with |  |
| low haemoglobin lev | vels and haematocrit, her                         | oatic comorbiditie                                | es and active haemo      | orrhage fron | n more than one  |  |
| artery.             |                                                   |                                                   |                          |              |                  |  |
|                     | Cardiovascular diseases (%)                       | 2 [50]                                            | 10 [38]                  | 1.000        |                  |  |

| Cardiovascular diseases (%) | 2 [50]    | 10 [38]  | 1.000 |
|-----------------------------|-----------|----------|-------|
| Liver impairment (%)        | 3 [75]    | 2 [8]    | 0.009 |
| Renal impairment (%)        | 1 [25]    | 2 [8]    | 0.360 |
| Malignancy (%)              | 2 [50]    | 6 [23]   | 0.284 |
| Anticoagulant therapy (%)   | 1 [25]    | 4 [15]   | 0.538 |
| Antiplatelet therapy (%)    | 1 [25]    | 8 [31]   | 1.000 |
| latrogenic causes (%)       | 3 [75]    | 8 [31]   | 0.126 |
| Extrathoracic injuries (%)  | 0 [0]     | 5 [19]   | 1.000 |
| ICA embolized >1 (%)        | 4 [100]   | 10 [38]  | 0.037 |
| Packed cells transfused, mL | 12 [6–40] | 5 [3–11] | 0.128 |

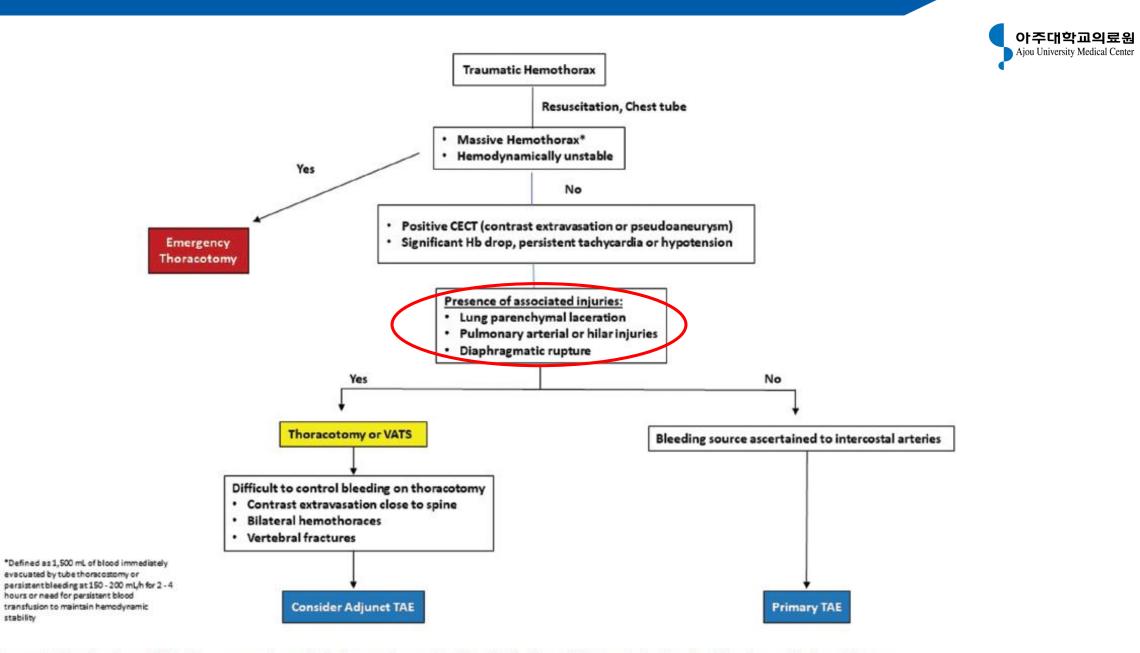



Figure 3: Previously published case reports and studies on transarterial embolization of intercostal artery(ies) for traumatic hemothorax

# Bleeding from thoracic spinal fractures



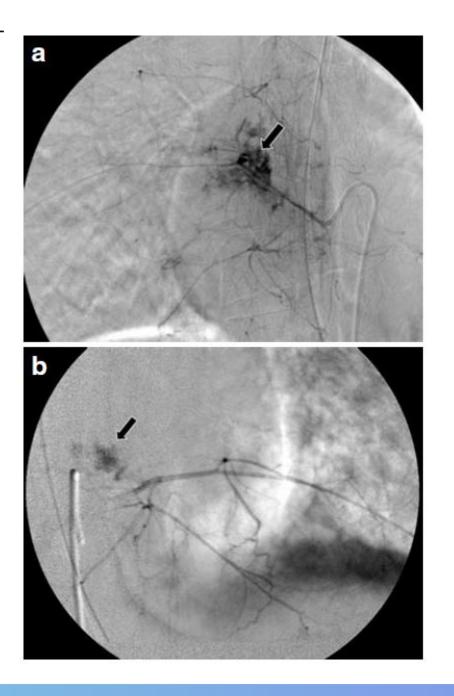
Table 1 Clinical characteristics of 12 cases (10 reported cases and our 2 cases)

Scand J Trauma Resusc Emerg Med. 2020 Sep 11;28(1):92

| Author/<br>Year                         | Age | Sex | Injury<br>mechanism | Thoracic spinal<br>fracture as the<br>bleeding source<br>(site/ Fx type) | Other sites of<br>injury                                | Initial<br>hemodynamic<br>status |           | Drained<br>volume of<br>Right HTX<br>(mL) | Intervention                                                | Hemostatic<br>technique                  | Deterioration<br>during the<br>transfer | Spinal<br>fixation | Prognosis |
|-----------------------------------------|-----|-----|---------------------|--------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|-----------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------|-----------------------------------------|--------------------|-----------|
| Dalvie/<br>2000 [8]                     | 28  | М   | Traffic<br>accident | T4 / dislocation                                                         | NR                                                      | NR                               | Bilateral | NR                                        | Right thoracotomy                                           | spinal fixation                          | Yes                                     | Performed          | Survived  |
| van Raaij/<br>2000 [13]                 | 55  | F   | Fall                | T11 / Chance                                                             | Compression Fx<br>(T10 & 12),<br>chest, pelvis,<br>limb | unstable                         | Right     | 1500                                      | Right thoracotomy                                           | bone wax,<br>synthetic patch             | NR                                      | NR                 | Survived  |
| Lu/ 2010<br>[10]                        | 72  | F   | Traffic<br>accident | T11 / burst + T12                                                        | NR                                                      | unstable                         | Bilateral | 1300                                      | Right thoracotomy                                           | bone wax,<br>gauze packing               | NR                                      | Performed          | Survived  |
| Masteller/<br>2012 [11]                 | 93  | М   | Fall                | T10–11 / burst                                                           | chest, L1–2 Fx                                          | NR                               | Right     | 1000                                      | Only thoracentesis.                                         | -                                        | NR                                      | Not<br>performed   | Dead      |
| Masteller/<br>2012 [11]                 | 71  | М   | Transfer in<br>OR   | T11 / burst                                                              | none                                                    | unstable<br>(CPA later)          | Right     | 3000                                      | Only thoracentesis.                                         | -                                        | NR                                      | Not<br>performed   | Dead      |
| Okamoto/<br>2018 [12]                   | 81  | М   | Fall                | T7 / Chance                                                              | NR                                                      | stable<br>(unstable later)       | Right     | 1330                                      | Right thoracotomy                                           | bone wax,<br>coagulant<br>sheet          | NR                                      | Performed          | Survived  |
| Hirota/<br>2019 [ <mark>9</mark> ]      | 74  | F   | Fall                | T11 / Chance                                                             | none                                                    | unstable                         | Right     | 1200                                      | Right thoracotomy                                           | coagulant<br>sheet                       | NR                                      | Performed          | Survived  |
| Kaneko/<br>2000 [14]                    | 86  | F   | Unclear             | T6 / dislocation                                                         | NR                                                      | unstable                         | Right     | 2000                                      | Right thoracotomy                                           | argon beam,<br>iliopsoas<br>muscle flap  | NR                                      | Not<br>performed   | Dead      |
| Matsushita/<br>2016 [ <mark>16</mark> ] | 67  | м   | Hit by a<br>lumber  | T3 / dislocation                                                         | chest, T12 Fx<br>(dislocation),<br>limb                 | unstable                         | Bilateral | 2090                                      | Right thoracotomy                                           | coagulant<br>sheet                       | NR                                      | Performed          | Survived  |
| Haruta/<br>2016 [15]                    | 78  | F   | Traffic<br>accident | T8 / reverse<br>Chance                                                   | TBI, chest, liver, pelvis                               | unstable<br>(CPA later)          | Right     | 1400                                      | Left thoracotomy<br>followed by<br>clamshell<br>thoracotomy | gauze packing,<br>coagulant<br>sheet     | NR                                      | Not<br>performed   | Dead      |
| Our case                                | 81  | М   | Traffic<br>accident | T8 / burst                                                               | TBI, C5 Fx, chest,<br>pelvis, limbs                     | unstable                         | Right     | 1500                                      | Right thoracotomy                                           | gauze packing                            | Yes                                     | Not<br>performed   | Survived  |
| Our case                                | 64  | М   | Fall                | T7 / burst                                                               | TBI, chest, L1 Fx                                       | stable<br>(unstable later)       | Right     | 1300                                      | Right thoracotomy                                           | gauze packing,<br>bone wax,<br>coagulant | Yes                                     | Performed          | Survived  |

Abbreviations: C cervical spine, CPA cardiopulmonary arrest, F female, Fx fracture, HTX hemothorax, L lumber spine, M male, NR not reported, OR operation room, T thoracic spine, TBI traumatic brain injury

sheet


Emerg Radiol (2009) 16:489–491 DOI 10.1007/s10140-008-0780-8

CASE REPORT

Usefulness of transcatheter arterial embolization for intercostal arterial bleeding in a patient with burst fractures of the thoracic vertebrae

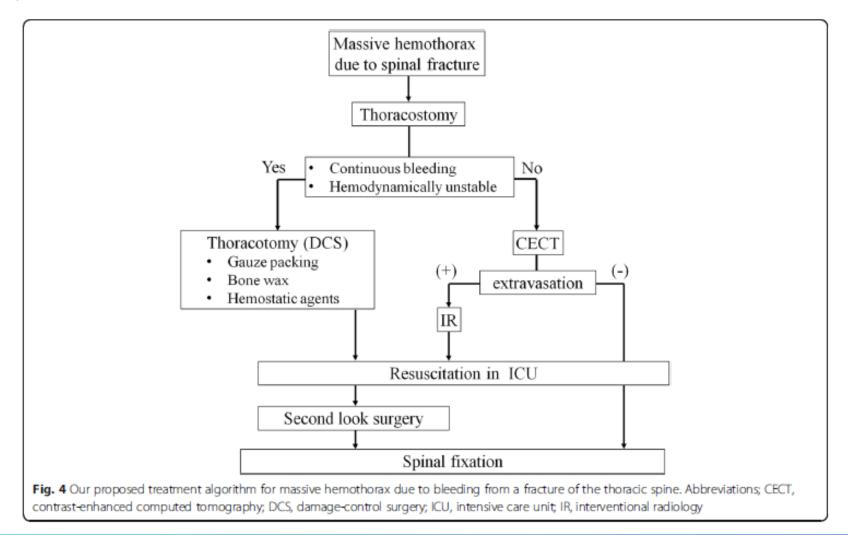
Akiyoshi Hagiwara • Shinichiro Iwamoto







#### ORIGINAL RESEARCH


Open Access



Massive hemothorax due to bleeding from thoracic spinal fractures: a case series and systematic review

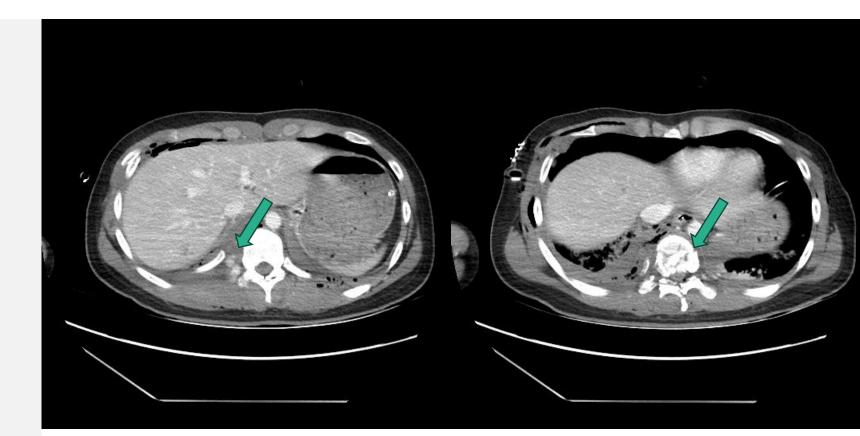


Kohei Ninomiya<sup>†</sup>, Akira Kuriyama<sup>\*†</sup> and Hayaki Uchino

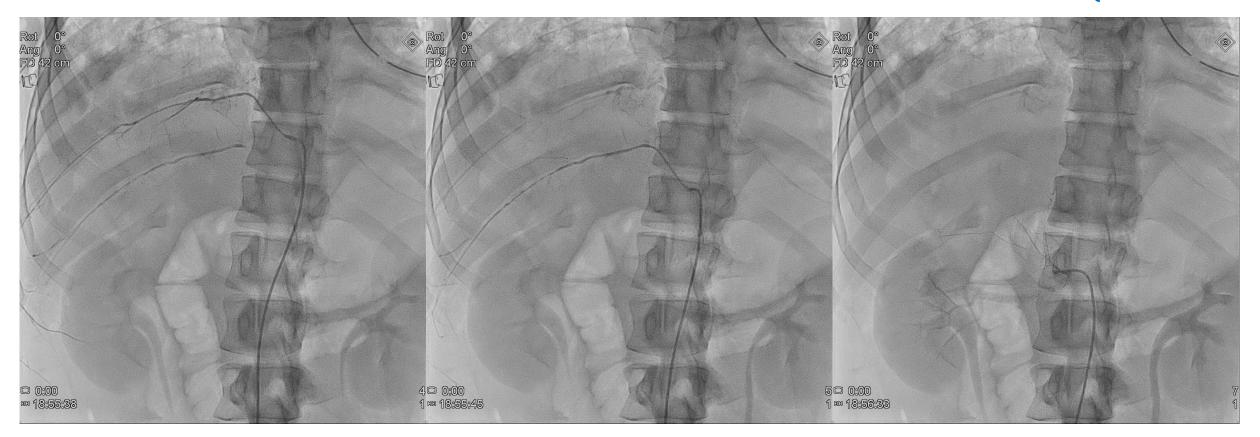




M/22


Fall from 14th floor

BP 94/72 HR 142


88% via 100% mask 15L

GCS 3/5/6 FAST(-)

HOD 1 Chest tube drainage 2000ml







Embolization of injured lumbar arteries (two levels) using NBCA glue mixture.

HOD 2 chest tube drainage 500cc for 1 day HOD 2 OS op for multiple spine fracture

#### Delayed massive hemothorax due to diaphragm injury with rib fracture: A case report



Tomohiro Muronoi\*, Akihiko Kidani, Kazuyuki Oka, Madoka Konishi, Shunsuke Kuramoto, Yoshihide Shimojo, Eiji Hira, Hiroaki Watanabe

Department of Acute Care Surgery, Faculty of Medicine, Shimane University, Shimane, Japan





아주대학교의료원

Ajou University Medical Center

International Journal of Surgery Case Reports 77 (2020) 133–137

#### Table 1

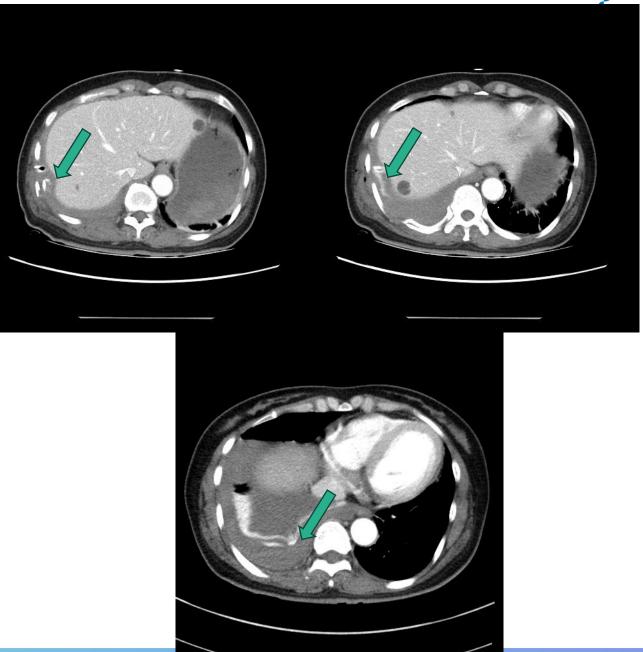
Studies concerning delayed hemothorax due to blunt trauma requiring surgical intervention or IVR reported in the English literature (References: [4,5,9,12,18–23]).

| No | Year | Author                 | Age/sex | Mechanisms                     | Time from onset | Extent rib<br>fracture      | Surgery                        | Cause                 | Outcome  |
|----|------|------------------------|---------|--------------------------------|-----------------|-----------------------------|--------------------------------|-----------------------|----------|
| 1  | 1998 | Simon                  | N/A     | N/A                            | 18h-6days       | N/A                         | Thoracotomy                    | Intercostal artery    | Survived |
| 2  | 1998 | Simon                  | N/A     | N/A                            | 18h-6days       | N/A                         | Thoracotomy                    | Intercostal artery    | Survived |
| 3  | 2004 | Misthos                | N/A     | N/A                            | 2–14 days       | N/A                         | Thoracotomy                    | Intercostal artery    | Survived |
| 4  | 2004 | Misthos                | N/A     | N/A                            | 2–14 days       | N/A                         | Thoracotomy                    | Intercostal artery    | Dead     |
| 5  | 2013 | Masuda                 | 56/M    | Fall                           | 30days          | Left 10th                   | Thoracotomy                    | Extra pleural cavity  | Survived |
| 6  | 2014 | Chen                   | 60/M    | Fall                           | 6days           | Right<br>10th-11th          | VATS                           | Diaphragm             | Survived |
| 7  | 2015 | Yamanashi              | 75/M    | Motorcycle<br>accident         | 24h             | Right 7th-<br>8th,10th-11th | IVR→VATS                       | Diaphragm             | Survived |
| 8  | 2015 | Curfman                | 29/M    | Assault                        | 10days          | Left 7th                    | Thoracotomy                    | Intercostal artery    | Survived |
| 9  | 2016 | Ahn                    | 24/F    | Fall                           | 13days          | Right<br>11th-12th          | VATS                           | Musculophrenic artery | Survived |
| 10 | 2017 | Lin                    | 19/M    | Assault                        | 12hours         | None                        | Thoracotomy                    | Diaphragm             | Survived |
| 11 | 2018 | Chang                  | 52/M    | Fall                           | 93h             | Left 4th-10th               | Thoracotomy                    | Diaphragm             | Survived |
| 12 | 2018 | Chang                  | 44/M    | Slip                           | 63h             | Right 8th-10th              | VATS→Thoracotomy               | Diaphragm             | Survived |
| 13 | 2018 | Chang                  | 45/M    | Motorcycle<br>accident         | 66h             | Left 10th-12th              | Thoracotomy                    | Diaphragm             | Survived |
| 14 | 2018 | Chang                  | 59/M    | Pedestrian<br>traffic accident | 63h             | Right 1st-11th              | Thoracotomy                    | Diaphragm             | Survived |
| 15 | 2018 | Chang                  | 31/M    | Motor vehicle<br>accident      | 33h             | Right 3rd-8th               | $VATS \rightarrow Thoracotomy$ | Diaphragm             | Survived |
| 16 | 2019 | Igai                   | 44/F    | N/A                            | 22days          | Right 9th-12th              | VATS                           | Diaphragm             | Survived |
| 17 | 2019 | Igai                   | 55/F    | N/A                            | 30days          | Left 9th-11th               | Thoracotomy                    | Diaphragm             | Survived |
| 18 | 2019 | Igai                   | 85/F    | N/A                            | 15days          | Left 9th-11th               | Thoracotomy                    | Diaphragm             | Survived |
| 19 | 2019 | Igai                   | 57/F    | N/A                            | 14h             | Right 5th-12th              | Thoracotomy                    | Diaphragm             | Survived |
| 20 | 2020 | The<br>present<br>case | 58/M    | Fall                           | 17h             | Left 11th-12th              | IVR→Thoracotomy                | Diaphragm             | Survived |

Abbreviations: IVR, interventional radiology; N/A, no available information; VATS, video-assisted thoracic surgery.



- Arteries feeding the diaphragm comprise the pericardiophrenic artery; the musculophrenic artery, branching from the internal thoracic artery, and; the inferior phrenic artery, branching from the abdominal aorta or the celiac artery.
- The effect of embolization of the intercostal artery or the internal thoracic artery on hemostasis in the diaphragm is not clear.
- Since embolization of the inferior phrenic, pericardiophrenic, and musculophrenic arteries is not a simple procedure, a lengthy surgical intervention is required to stop bleeding in the diaphragm. If the vital signs are unstable, these arteries should not be sticked for IVR




F/50 Slip down 3 days ago BP 208/107 HR 68 100% via 100% mask 15L GCS 4/5/6

Chest tube drainage : 1130ml in local clinic

#### **Thoracoscopic exploration**

Op finding Lung laceration 3cm at RLL Diaphragm laceration 5cm



#### Case Report

#### Pseudoaneurysm and post-traumatic arteriovenous fistula in pulmonary artery branch: Case report and review of the literature☆

Sandra Ramírez, MD<sup>a</sup>, Nicolás Bastidas, MS<sup>b,\*</sup>, Nicolás Lozano, MS<sup>c</sup>, Diego Casas, MD<sup>d</sup>, Michel Hernández, MD<sup>a</sup>

<sup>a</sup>Radiology Department, Hospital Universitario de la Samaritana, Bogotá, Colombia <sup>b</sup>University of la Sabana, Chía, Cundinamarca, Colombia <sup>c</sup>University of Los Andes, Bogotá, Colombia <sup>d</sup>Radiology Faculty, University of la Sabana, Chía, Cundinamarca 110321, Colombia



Ajou University Medical Center

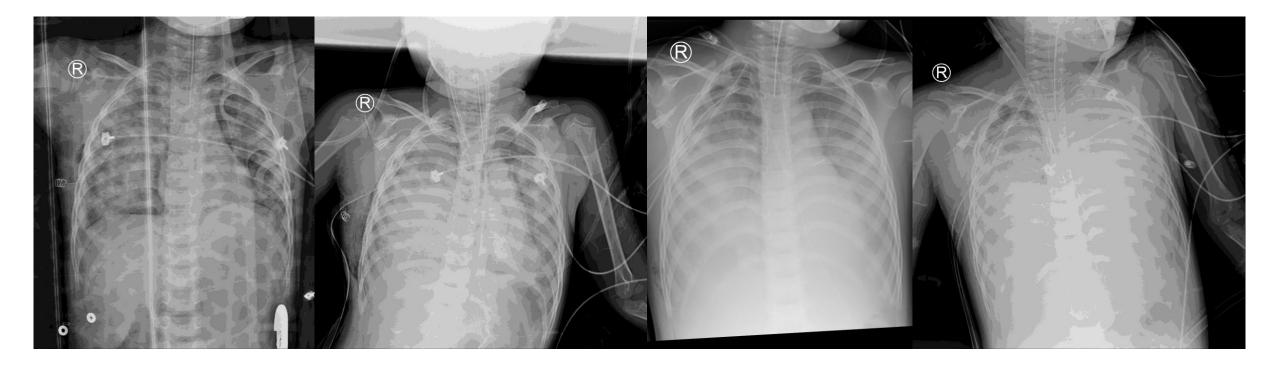
아주대학교의료원

Although there are no definitive guidelines for the management of traumatic pseudoaneurysms, it is important to analyze their size, as well as patient symptoms and hemodynamic status in order to ascertain the risk of rupture and decide whether to observe the patient or to perform endovascular or surgical repair.



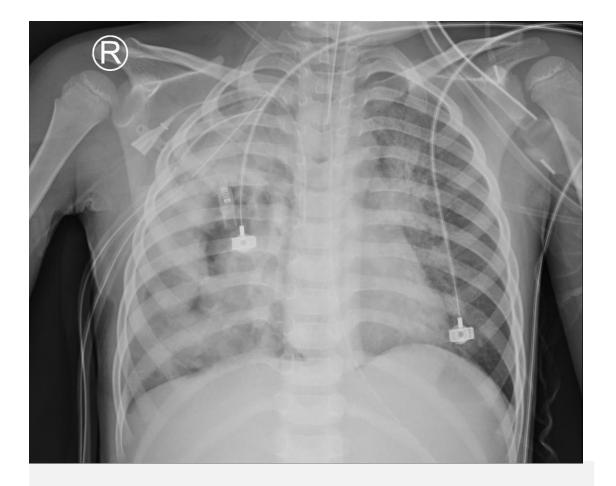

M/7

Out car TA

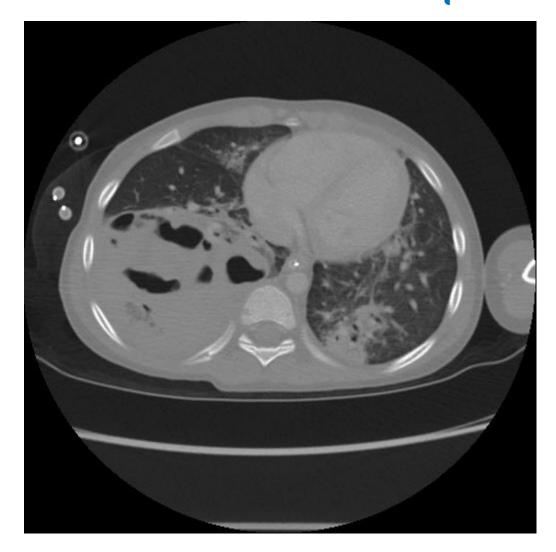

137/119

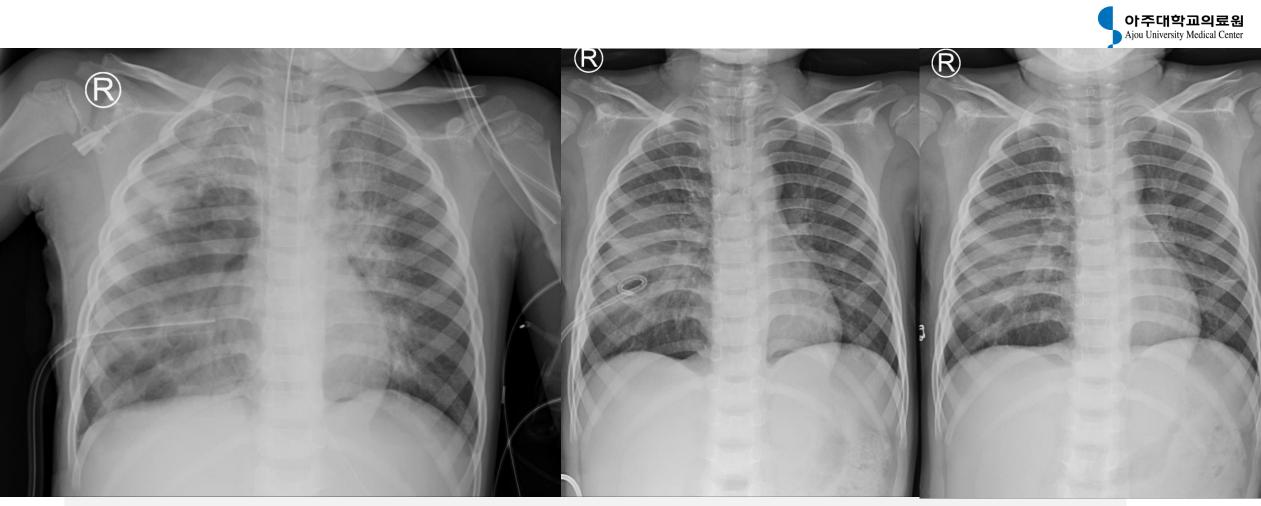
97% via 100% mask 15L

GCS 3/5/5







HOD 1 Chest tube drainage 600cc HOD 2 ARDS 진행 HOD 4 ECMO support





#### HOD 15 ECMO weaning

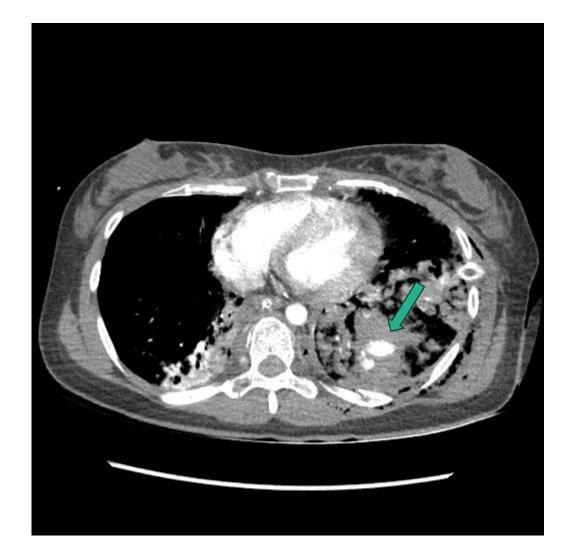




Repeated abscess drainage HOD 29 tracheostomy HOD 32 ventilator weaning HOD 52 tracheostomy seal off HOD 59 discharge



F/23


Fall from 4th floor

BP 90/20 HR 120

98% via 100% mask 15L

GCS 4/4/5

Chest tube drainage 890ml for 6 hr



1.C7 Rt. transverse process Fx. 2. Both multiple rib fx. Lt. hemopneumothorax (s/p chest tube insertion) Rt. lung contusion 5. Lt. renal injury 4. r/o Fx. unstable burst, T4 Flexion-distraction injury, T7/8 Flexion-distraction injury, T12/L1 Fx. transverse process, T2-3, Lt. Fx. transverse process, T4, Both Fx. transverse process, T5-T7, Rt. Fx. transverse process, T8, Both. Fx. transverse process, T9-L3, Lt. Fx. transverse process, L4, Both. Fx. transverse process, L5, Lt. 6. Fx. sacrum ( $\lambda$ -type) Diastasis, SI joint, Rt. Fx. ilium, Rt. Fx. both rami of pubis, pelvis, Lt. Fx. lateral malleolus, ankle, Lt.





아주대학교의료원 Ajou University Medical Center

No active bleeding in the pelvis, kidney, and thoracic wall

Pseudoaneurysms in the left lower lung

Selective embolization of pseudoaneurysm and feeding branch using NBCA glue mixture



HOD 2 open reduction & posterior fusion for T-L spine& SI screw insertion for pelvic bone fractureHOD 6 ventilator weaning



## **Occult Hemothorax**

Systematic Review

### The management of occult hemothorax in adults with thoracic trauma: A systematic review and meta-analysis

Richard W. Gilbert, MD, MSc, Adam M. Fontebasso, MD, PhD, Lily Park, BSc, Alexandre Tran, MD, MSc, and Jacinthe Lampron, MD, MPH, Ottawa, Canada

- Hemothoraces seen on CT scan but not on x-ray are defined as occult hemothoraces.
- The standard trauma bay supine chest x-ray is noted to be able to detect most large volume (greater than 500 mL) hemothoraces.
- Conservative treatment of occult hemothorax fails in 23.1% of patients.
- It may be possible to safely observe patients with occult hemothoraces less than 300 mL (1.5 cm pleural stripe) secondary to blunt trauma without upfront tube thoracostomy insertion.

J Trauma Acute Care Surg. 2020 Dec;89(6):1225-1232.

# **Delayed Thoracotomy**



In a patient with multisystem trauma, delayed repair is appropriate to allow time for **stabilization or treatment of a severe injury to the brain and intra-abdominal organs or pelvis.** 

- Complications or missed injury of thoracic trauma
- Delayed repairs of diaphragmatic injury
- Retained hematoma
- Empyema

### **Retained Hemothorax**



EAST PRACTICE MANAGEMENT GUIDELINES

Practice Management Guidelines for Management of Hemothorax and Occult Pneumothorax

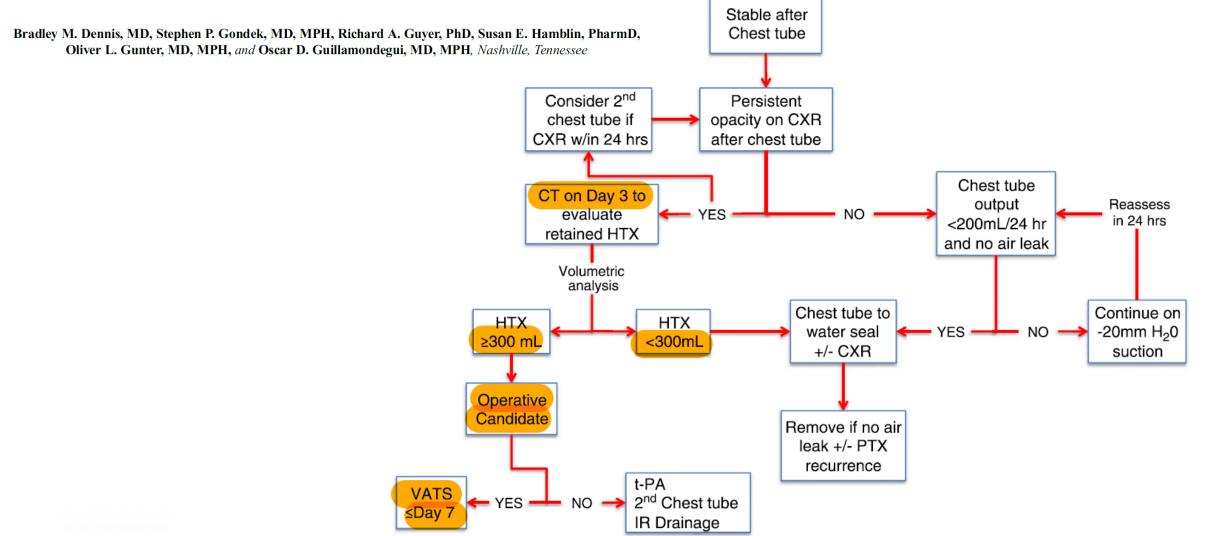
Trauma. 2011 Feb;70(2):510-8.

- The presence of retained hemothorax on postplacement CXR has been shown to be an independent predictor of the development of empyema in 33% of patients
- Persistent retained hemothorax, seen on plain films, after placement of a thoracostomy tube should be treated with early VATS, not a second chest tube (Level 1).
- In a prospective randomized trial, Meyer et al. showed that patients who had retained hemothorax on plain films 72 hours after initial chest tube output benefited from early VATS instead of a second chest tube.
- Patients undergoing VATS had significantly shorter duration of chest tube drainage, fewer days in the hospital after the procedure, and lower hospital costs than putting in a second chest tube.



#### Management of simple and retained hemothorax: A practice management guideline from the Eastern Association for the Surgery of Trauma

Nimitt J. Patel<sup>a,\*</sup>, Linda Dultz<sup>b</sup>, Husayn A. Ladhani<sup>c</sup>, Daniel C. Cullinane<sup>d</sup>, Eric Klein<sup>e</sup>, Allison G. McNickle<sup>f</sup>, Nikolay Bugaev<sup>g</sup>, Douglas R. Fraser<sup>f</sup>, Susan Kartiko<sup>h</sup>, Chris Dodgion<sup>i</sup>, Peter A. Pappas<sup>J</sup>, Dennis Kim<sup>k</sup>, Sarah Cantrell<sup>1</sup>, John J. Como<sup>c</sup>, George Kasotakis<sup>m</sup>


#### Table 2

Summary of Recommendations for PICO questions.

| PIC | O QUESTION                                                                                                                          | RECOMMENDATION          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1   | In hemodynamically stable patients with a small traumatic hemothorax (less than 500 ml) should routine tube thoracostomy vs.        | No Recommendation       |
|     | observation be performed to decrease need for additional procedure, rHTX and empyema?                                               |                         |
| 2   | In hemodynamically stable patients with a traumatic hemothorax requiring drainage should pigtail catheter (14 Fr or smaller) vs.    | Conditionally Recommend |
|     | thoracostomy tube (20 Fr or larger) be placed to decrease need for additional procedure, rHTX and empyema?                          | pigtail catheter        |
| 3   | In hemodynamically stable patients with retained traumatic hemothorax, should intrapleural thrombolytic therapy (i.e. tPA) be       | Conditionally Recommend |
|     | attempted vs. immediate thoracoscopic assisted drainage (VATS) in order to decrease need for additional operative or non-           | VATS                    |
|     | operative procedure and empyema?                                                                                                    |                         |
| 4   | In hemodynamically stable patients with retained traumatic hemothorax deemed to require drainage should early VATS (less than       |                         |
|     | or equal to 4 days) vs. Late VATS (greater than 4 days) be performed in order to decrease need for additional procedure, conversion |                         |
|     | to open thoracotomy, empyema, and length of hospital stay?                                                                          |                         |



#### Use of an evidence-based algorithm for patients with traumatic hemothorax reduces need for additional interventions



Acute Care Surg. 2017;82: 728–732.



### Take Home Massage

- Thoracic trauma resulting in persistent hemodynamic instability, without another obvious source, should also prompt emergent thoracic exploration.
- Urgent thoracotomy for blunt trauma is rarely justified on the basis of chest tube output alone.
- VATS and TAE are useful for patients with significant bleeding who are hemodynamically stable.
- Persistent retained hemothorax, seen on plain films, after placement of a thoracostomy tube should be treated with early VATS.



# Thank you for your attention