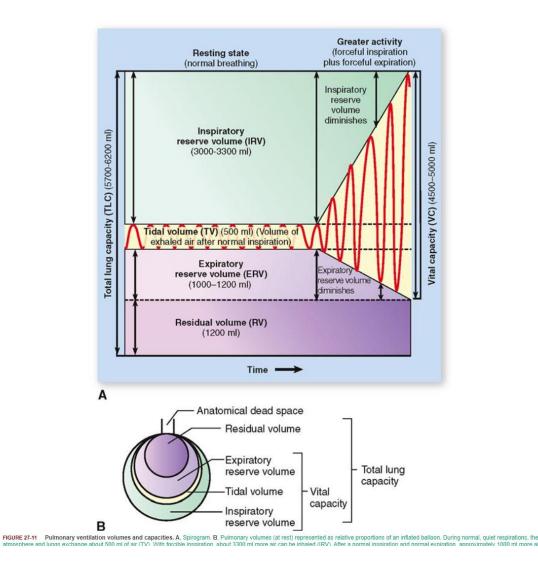


Ventilator Strategies for Trauma

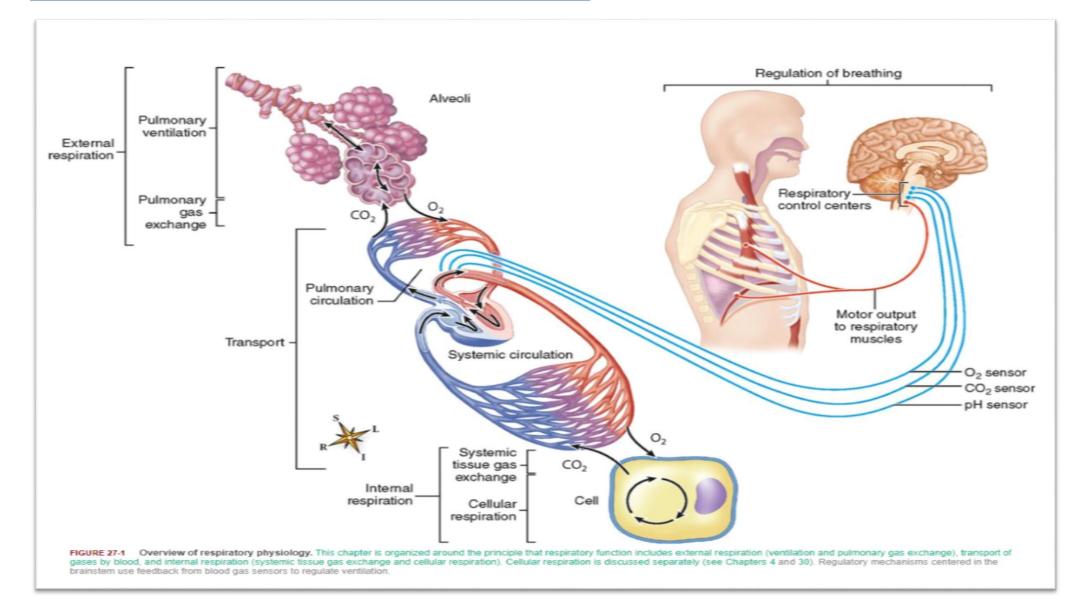
Dae Sung Ma. M.D. Associate Professor Dankook University, Collage of Medicine, Cheonan, Korea

.

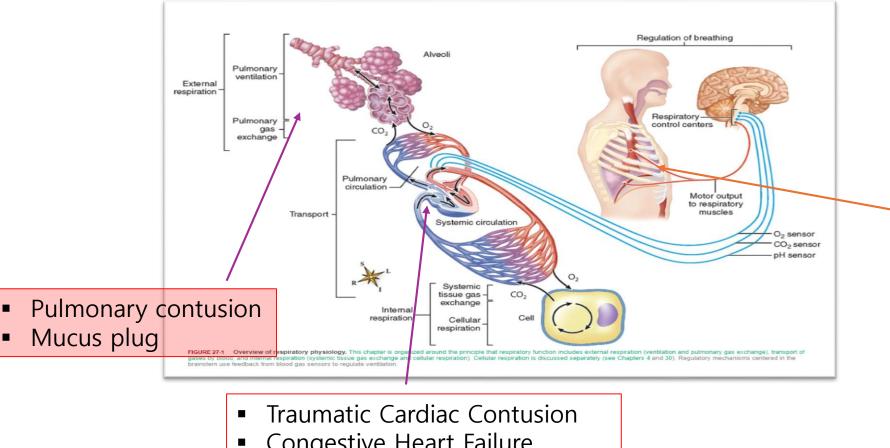
.


Conflict of Interest

Contents


- 1. Mechanism of respiration
- 2. Mechanical Ventilation in Trauma
- 3. Several Consideration in Prolonged Mechanical Ventilation
- 4. Specific Consideration of Trauma in Mechanical Ventilation
- 5. Summary

Respiration


- Provide O2 to the tissues and to remove the CO2
 - Breathing (ventilation) :
 - External respiration : air and blood
 - Internal respiration : blood and tissues
- Cellular respiration : produce ATP(energy)

Respiratory system

Trauma impact to respiration system

- Chest wall injury MRF, Flail chest
- Hemothorax, Pneumothorax

- **Congestive Heart Failure**
- COPD

Direct chest injury leading to functional impairment of one or both lungs

Trauma impact to respiration system

Indirect injury via a multi-factorial inflammatory—mediated response to severe extrathoracic injury.

able 1 General causes of systemic hypoxia				
Cause of hypoxia	Impairment	Examples		
Hypoxaemic	Gas transport to, or across, the alveoli	Low atmospheric oxygen tension (e.g. altitude) Obstructive lung disease (e.g. asthma, chronic obstructive pulmonary disease) Restrictive lung disease (e.g. fibrosis) Pulmonary oedema Pulmonary consolidation Acute respiratory distress syndrome		
Circulatory/stagnant	Transport of oxygen from the alveoli to tissues	Hypovolaemia Cardiogenic shock Distributive shock (e.g. septic, anaphylactic) Obstructive shock (e.g. cardiac tamponade, tension pneumothorax, massive pulmonary embolism)		
Anaemic	Oxygen carrying capacity of blood	Low haemoglobin concentration (e.g. iron deficiency, folate deficiency) Genetic haemoglobinopathies (e.g. thalassaemias)		
Histotoxic	Oxygen utilisation at cellular level	Cellular dysfunction (e.g. sepsis) Cyanide (mitochondrial complex IV inhibitor) Carbon monoxide poisoning		

Goal of Mechanical Ventilation in Trauma

To maintain gas exchange, to reduce or substitute respiratory effort	To diminish the consumption of systemic and/or myocardiac O2	To obtain lung expansion
To allow sedation, anesthesia and muscle relaxation	To stabilize the thoracic wall	To avoid hypoxia and secondary tissue injury

Mechanical Ventilation in Trauma

ORIGINAL RESEARCH

Open Access

Predictors of pulmonary failure following severe trauma: a trauma registry-based analysis

Emanuel V Geiger^{1*}, Thomas Lustenberger¹, Sebastian Wutzler¹, Rolf Lefering², Mark Lehnert¹, Felix Walcher¹,

Helmut L Laurer¹, Ingo Marzi¹ and TraumaRegister DGU[®]

Table 4 List of independent predictors for pulmonary failure as dependent variable in multivariate logistic regression analysis

Risk factor	p-value	Odds ratio (Cl ₉₅)
Lung injury (AIS _{thorax} ≥3)	<0.0001	1.961 (1.745-2.205)
Male gender	<0.0001	1.654 (1.460-1.874)
PMCs	<0.0001	1.581 (1.401-1.784)
Transfusion of ≥10 PRBC	<0.0001	1.418 (1.190-1.690)
Administration of PRBC	<0.0001	1.386 (1.228-1.564)
Glasgow coma scale ≤ 8	<0.0001	1.273 (1.126-1.439)
ISS per point	<0.0001	1.027 (1.022-1.032)
Age per year	<0.0001	1.015 (1.012-1.017)

Abbreviations: PMC, pre-existing medical condition; PRBC, Packed Red Blood Cells; ISS, Injury Severity Score.

Mechanical Ventilation in Trauma

Check for updates

Injury 55 (2024) 111194

Early risk factors for prolonged mechanical ventilation in patients with severe blunt thoracic trauma: A retrospective cohort study

Aran Gilaed ^{a,1}, Nadeem Shorbaji ^{b,1}, Ori Katzir ^{c,1}, Shaked Ankol ^d, Karawan Badarni ^e, Elias Andrawus ^e, Michael Roimi ^e, Amit Katz ^a, Yaron Bar-Lavie ^{d,e}, Aeyal Raz ^{d,f}, Danny Epstein ^{e,*}

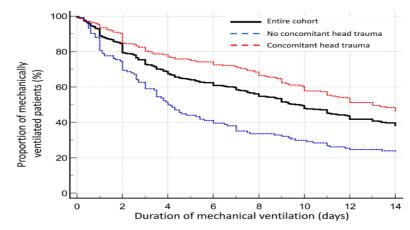
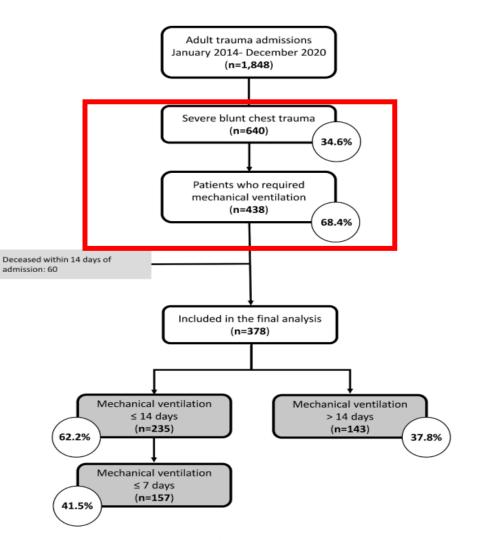
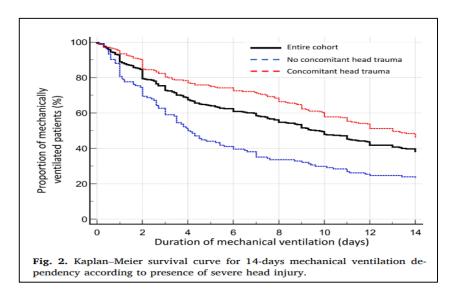



Fig. 2. Kaplan–Meier survival curve for 14-days mechanical ventilation dependency according to presence of severe head injury.

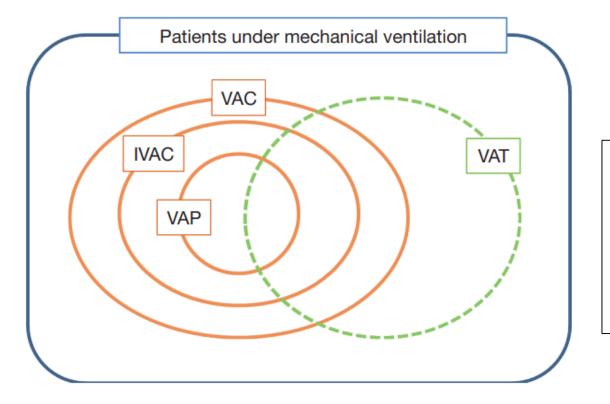

Mechanical Ventilation in Trauma

Injury 55 (2024) 111194

Early risk factors for prolonged mechanical ventilation in patients with severe blunt thoracic trauma: A retrospective cohort study

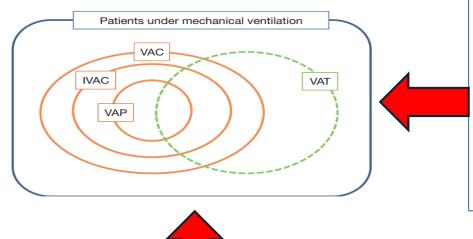
Aran Gilaed ^{a,1}, Nadeem Shorbaji ^{b,1}, Ori Katzir ^{c,1}, Shaked Ankol ^d, Karawan Badarni ^e, Elias Andrawus ^e, Michael Roimi ^e, Amit Katz ^a, Yaron Bar-Lavie ^{d,e}, Aeyal Raz ^{d,f}, Danny Epstein ^{e,*}

Conclusions


In summary, among patients with severe blunt thoracic injury (defined by chest AIS \geq 3), older age, male gender, concomitant severe head trauma, and transfusion of >5 blood units on admission were independently associated with prolonged MV. Among patients without concomitant TBI, age, respiratory comorbidities, p/f ratio during the first 24 h, and transfusion of >5 blood units on admission were associated with prolonged MV. Young patients suffering from isolated severe thoracic trauma, including those with extensive lung contusions and rib fractures, have a low risk of prolonged MV.

Several Consideration in prolonged Mechanical Ventilation

Ventilator induced Events



• > 3 cm H_2O PEEP

VAC : Ventilator-associated condition IVAC : Infection-related ventilatorassociated complication VAP : ventilator-associated pneumonia

Bundles : prevention Ventilator induced Events

- Appropriate analgesia and sedation (especially avoiding benzodiazepines)
- Daily interruption of sedation
- Early mobilization, with or without ambulation
- Deep venous thrombosis prophylaxis
- Gastrointestinal prophylaxis
- Balanced intravenous fluid administration

- Head of bed elevation (30 to 45 degrees)
- Mouth/endotracheal tube care (oral cleansing with chlorhexidine)
- Lung-protective ventilator strategies
- Early discontinuation of mechanical ventilation

Mechanism of Ventilator induced Lung Injury

Barotrauma : Damage secondary to high airway pressure (ie, pneumothorax or pneumomediastinum

Volutrauma: high Tv causing overdistention of alveoli

Atelectrauma : the shear and strain of collapsible lung units opening and closing

biotrauma : damage from the release of proinflammatory cytokines and immune-mediated injury that occurs when lung tissue is exposed to unphysiologic stress or strain

Lung Protective Ventilation

Limit	limit tidal volume (6-8 ml/kg x IBW)
Limit	limit end-inspiratory plateau pressure (Pplat) <30cm H2O
Provide	provide adequate PEEP to keep the lung open and prevent alveolar collapse
Limit	limit FiO2 as low as possible (PaO2 of 60-80 mm Hg or oxygenation saturation \ge 90%

Mechanical Ventilation –induced Diaphragm Dysfunction

ORIGINAL ARTICLE

Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes

Ewan C. Goligher^{1,2,3,4}, Martin Dres^{5,6}, Eddy Fan^{1,2,4,7}, Gordon D. Rubenfeld^{1,4,7,8}, Damon C. Scales^{1,4,7,8}, Margaret S. Herridge^{1,2,4,9}, Stefannie Vorona², Michael C. Sklar^{5,10}, Nuttapol Rittayamai⁵, Ashley Lanys⁵, Alistair Murray², Deborah Brace², Cristian Urrea², W. Darlene Reid¹¹, George Tomlinson², Arthur S. Slutsky^{1,4,5}, Brian P. Kavanagh^{1,3,10,12}, Laurent J. Brochard^{1,4,5*}, and Niall D. Ferguson^{1,2,3,4,7,9*}

¹Interdepartmental Division of Critical Care Medicine, ³Department of Physiology, ⁴Department of Medicine, ⁷Institute for Health Policy, Management, and Evaluation, ¹⁰Department of Anesthesia, and ¹¹Department of Physical Therapy, University of Toronto, Toronto, Canada; ⁴Division of Respirology, Department of Medicine, University Health Network and Mount Sinai Hospital, Toronto, Canada; ⁵Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; ⁶Respiratory and Critical Care Department, Groupe Hospitalier Pitié Salpêtrière Charles Foix, Assistance Publique Hôpitaux de Paris, Paris, France; ⁸Department of Critical Care Medicine, Sunnybrook Health Science Centre, Toronto, Canada; ⁹Toronto General Research Institute, Toronto, Canada; and ¹²Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada

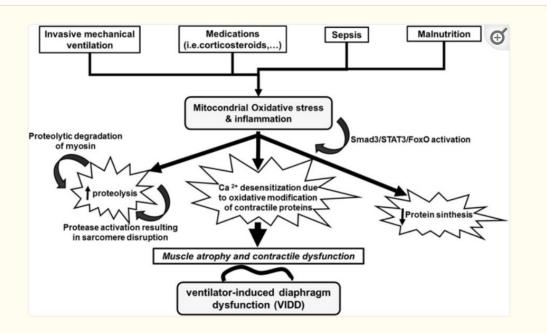
REVIEW

Open Access

Check for

Ventilator-induced diaphragm dysfunction: translational mechanisms lead to therapeutical alternatives in the critically ill

Oscar Peñuelas^{1,2*}, Elena Keough¹, Lucía López-Rodríguez¹, Demetrio Carriedo¹, Gesly Gonçalves¹, Esther Barreiro^{2,3,4} and José Ángel Lorente^{1,2,5}


From The 3rd International Symposium on Acute Pulmonary Injury Translational Research, under the auspices of the: 'IN-SPIRES®'

Amsterdam, the Netherlands. 4-5 December 2018

 changes in diaphragm structure and function caused by mechanical ventilation are an important and potentially avoidable determinant of poor outcomes

VIDD is reported in up to 53% of mechanically ventilated patients within 24 h of intubation.

Mechanical Ventilation –induced Diaphragm Dysfunction

<u>Fig. 1</u>

Summary of the current understanding of the molecular pathways contributing to ventilator-induced diaphragm dysfunction (VIDD) in critically ill patients. As shown, different conditions can lead to diaphragm atrophy via an imbalance between proteolysis and protein synthesis [<u>11</u>, <u>14</u>], whereas remaining muscle proteins may be impaired by enhanced oxidation and dephosphorylation [<u>15–17</u>]. Inflammation and oxidative stress are proposed to be the major drivers of these impairments [<u>17</u>]. In addition, certain drugs can impair neural drive and excitation-contraction coupling

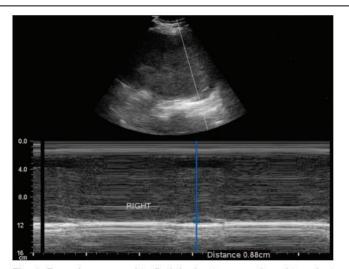


Fig. 1. B-mode was used to find the best approach and to select the exploration line of hemidiaphragm. During inspiration, diaphragmatic contraction was recorded by M-mode tracing, and the amplitude of excursion was measured on the vertical axis of the tracing from the baseline to the point of maximum height of inspiration on the graph.

Brief Report A Trend towards Diaphragmatic Muscle Waste after Invasive Mechanical Ventilation in Multiple Trauma Patients—What to Expect?

Liliana Mirea ^{1,2}, Cristian Cobilinschi ^{1,2,*}, Raluca Ungureanu ^{1,2,*}, Ana-Maria Cotae ^{1,2}, Raluca Darie ¹, Radu Tincu ^{1,3}, Oana Avram ^{1,3}, Sorin Constantinescu ^{4,5}, Costin Minoiu ^{4,6}, Alexandru Baetu ^{2,7} and Ioana Marina Grintescu ^{1,2}

Our current research suggests that diaphragmatic morphological changes may occur surprisingly faster after a relatively short duration of invasive mechanical ventilation in patients without any prior evidence of chronic comorbidities.

Mechanical Ventilation –induced Diaphragm Dysfunction

- spontaneous breathing as possible
- Optimizing sedation strategy
- Avoid prolonged use of muscle relaxants and steroids
- Inspiratory muscle training

Mechanical Ventilation –induced Diaphragm Dysfunction

Contents lists available at ScienceDirect

Journal of Critical Care

journal homepage: www.jccjournal.org

Effect of theophylline on ventilator-induced diaphragmatic dysfunction

Won-Young Kim, MD^{a,1}, So Hee Park, MD^{a,1}, Won Young Kim, MD, PhD^b, Jin Won Huh, MD, PhD^a, Sang-Bum Hong, MD, PhD^a, Younsuck Koh, MD, PhD^a, Chae-Man Lim, MD, PhD^{a,*}

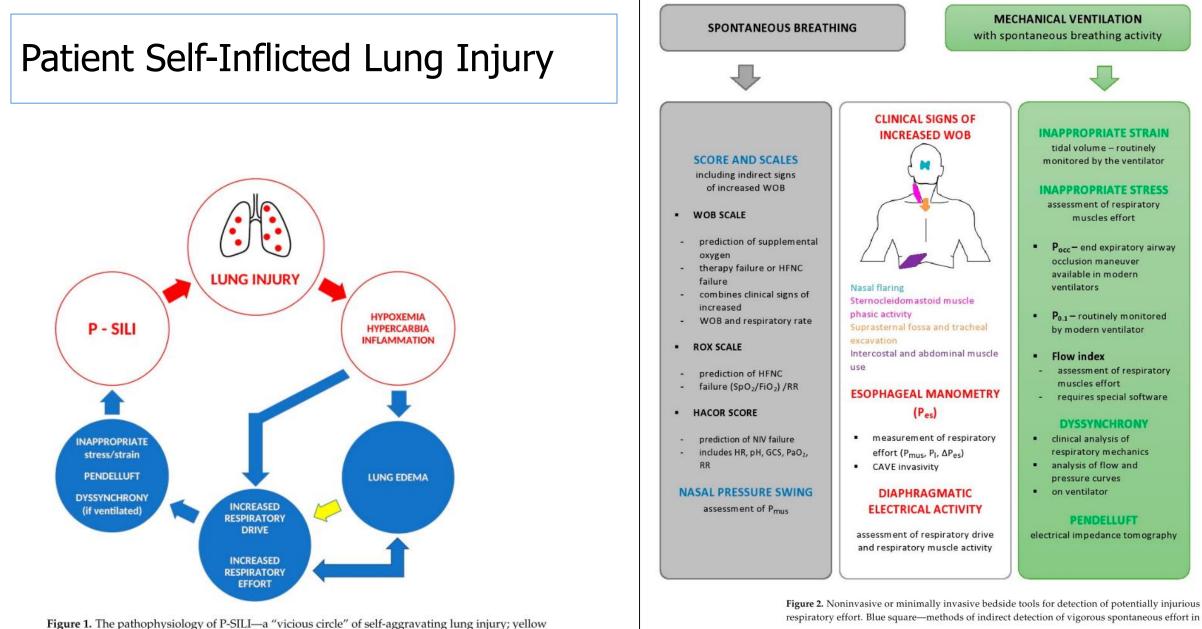
^a Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea ^b Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea

- Theophylline effect
- $\checkmark\,$ Heart muscle contractility and efficiency,
- ✓ Improves endurance and grip strength in patients with neuromuscular diseases
- ✓ Increases respiratory muscle activity such as intercostal muscle, transversus abdominis muscle, and diaphragm

The dose of theophylline was 200 (200-400) mg/d,

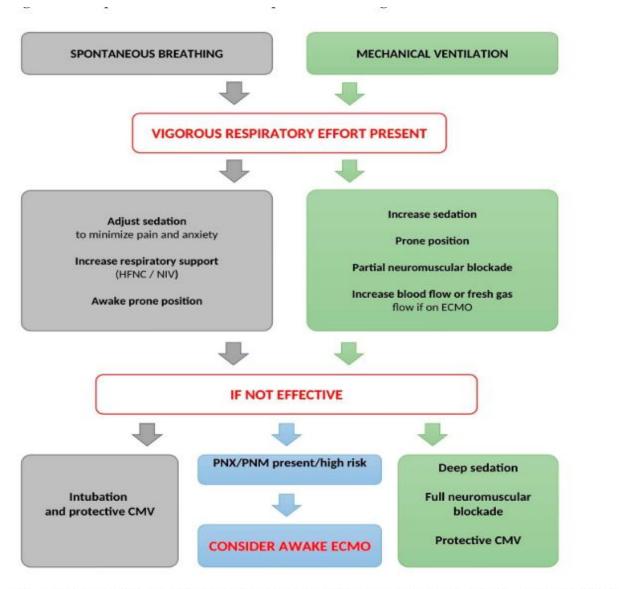
and the treatment duration was 12 (7-25) days

Patient Self-Inflicted Lung Injury

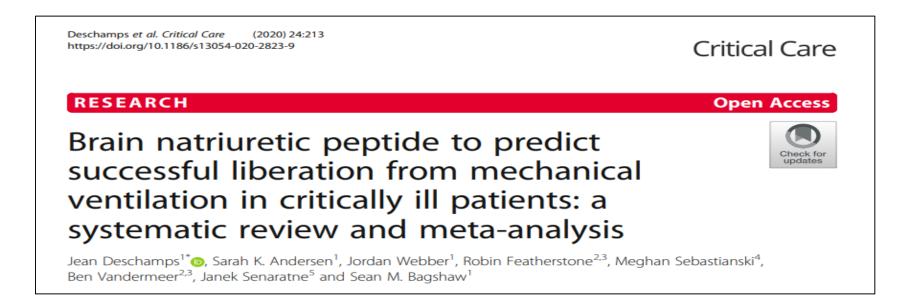


MDP

Review


Patient Self-Inflicted Lung Injury—A Narrative Review of Pathophysiology, Early Recognition, and Management Options

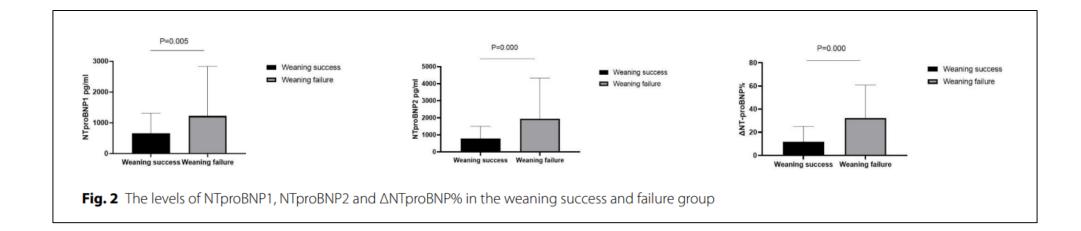
Peter Sklienka ^{1,2,3,*}, Michal Frelich ^{1,2}⁽¹⁾ and Filip Burša ^{1,2,3}⁽¹⁾


arrow-vagal signalization (according to [5,10,18]).

Patient Self-Inflicted Lung Injury

Figure 3. Proposal of an algorithm for P-SILI prevention and treatment. CMV—controlled mechanical ventilation; HFNC—high-flow nasal cannula; NIV—noninvasive ventilation; PNX—pneumothorax; PNM—pneumomediastinum; ECMO—extracorporeal membranous oxygenation.

Cardiac failure in Mechanical Ventilation



RESEARCH

Open Access

NT-proBNP change is useful for predicting weaning failure from invasive mechanical ventilation among postsurgical patients: a retrospective, observational cohort study

Yingying Zheng^{1†}, Zujin Luo^{1†} and Zhixin Cao^{1*}

Specific issue in trauma with Mechanical Ventilation

1. Timing of Mechanical Ventilation

Early Intubation

Archives of Academic Emergency Medicine. 2019; 7 (1): e35

ORIGINAL RESEARCH

Early Intubation vs. Supportive Care Outcomes in Patients with Severe Chest Trauma; a randomized trial study

Mohammad Nasr-Esfahani¹, Amir Bahador Boroumand²*, Mohsen Kolahdouzan³

1. Department of Emergency Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

2. Department of Emergency Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

3. Department of surgery, Faculty of medicine, Isfahan university of medical sciences, Isfahan, Iran.

Table 1: Thoracic trauma severity score.²

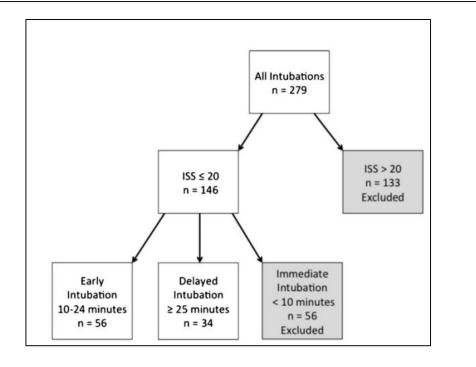
Grade	PaO ₂ /FiO ₂	Rib fracture	Lung contusions	Pleura	Age (yrs)	Point
0	>400	0	No	No	<30	0
1	300-400	01-Mar	Unilobar Unilateral	Pneumothorax	30-41	1
2	200-300	>3 unilateral	Unilobar bilateral or bilobar unilateral	Hemothorax or hemo- pneumothorax, unilateral	42-54	2
3	150-200	>3 bilateral	Bilateral <2 lobules	Hemothorax or hemo- pneumothorax bilateral	55-70	3
4	<150	Flail chest	Bilateral > 2 lobules	Tension pneumothorax	>70	5

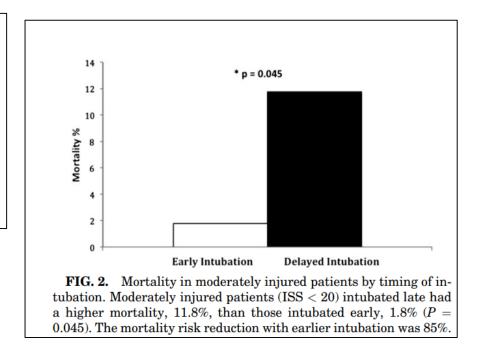
 Table 2:
 Outcomes of patients in early intubation and supportive care groups

Outcome	Early intubation	Control	Р
Duration of hospitalization	5.18±1.33	9.43±2.25	0.01
Complete recovery	29 (90.6)	22 (68.8)	0.03
Recovery with complications	3 (9.4)	10 (31.3)	0.01

Data are presented as frequency (%).

Journal of Surgical Research **170**, 286–290 (2011) doi:10.1016/j.jss.2011.03.044


ASSOCIATION FOR ACADEMIC SURGERY


Timing is Everything: Delayed Intubation is Associated with Increased Mortality in Initially Stable Trauma Patients¹

Emily Miraflor, M.D., Kelly Chuang, M.D., Marvin A. Miranda, B.A., Wendy Dryden, B.A., Louise Yeung, M.D., Aaron Strumwasser, M.D., and Gregory P. Victorino, M.D.²

Department of Surgery, UCSF-East Bay, Alameda County Medical Center, Oakland, California

Submitted for publication January 7, 2011

- Timing of intubation of initially stable, moderately injured trauma patients affects mortality
- Initially stable, moderately injured patients who later deteriorate and require delayed intubation had a higher mortality

2. Occult pneumothorax in Mechanical Ventilation

Clinical Study
Outcome of Concurrent Occult Hemothorax and Pneumothorax in Trauma Patients Who Required Assisted Ventilation
Ismail Mahmood, ¹ Zainab Tawfeek, ² Ayman El-Menyar, ^{3,4,5} Ahmad Zarour, ¹ Ibrahim Afifi, Suresh Kumar, ¹ Ruben Peralta, ¹ Rifat Latifi, ¹ and Hassan Al-Thani ¹
¹ Department of Surgery, Section of Trauma Surgery, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
² Department of Emergency, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
³ Clinical Research, Section of Trauma Surgery, Hamad General Hospital, Doha, Qatar
⁴ Clinical Medicine, Weill Cornell Medical School, P.O. Box 24144, Doha, Qatar
⁵ Internal Medicine, Ahmed Maher Teaching Hospital, Cairo, Egypt

- Occult HPTX can be carefully observed in patients with chest trauma who required positive pressure ventilation.
- Moreover, delayed tube thoracostomy is not associated with an adverse event
- With close observation

use of tube thoracotomy could be minimized and only restricted to those patients who had evidence of progression of hemo- or pneumothorax (increase in size) on follow up chest radiographs or developed respiratory compromise. 3. Pleural effusion in Mechanical Ventilation

CRITICAL CARE MEDICINE

Prevalence and Impact on Weaning of Pleural Effusion at the Time of Liberation from Mechanical Ventilation

A Multicenter Prospective Observational Study

Martin Dres, M.D., Damien Roux, M.D., Ph.D., Tài Pham, M.D., Alexandra Beurton, M.D., Jean-Damien Ricard, M.D., Ph.D., Muriel Fartoukh, M.D., Ph.D., Alexandre Demoule, M.D., Ph.D.

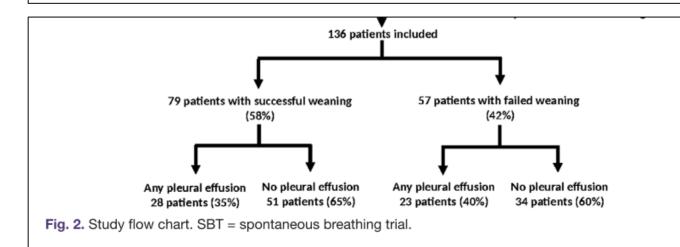


Fig. 1. Estimation of the volume of pleural fluid according to the classification of the British Thoracic Society.¹⁷ The volume of fluid was estimated as small in (*A*), moderate in (*B*), and large in (*C*).

CRITICAL CARE MEDICINE

Prevalence and Impact on Weaning of Pleural Effusion at the Time of Liberation from Mechanical Ventilation

A Multicenter Prospective Observational Study

Martin Dres, M.D., Damien Roux, M.D., Ph.D., Tài Pham, M.D., Alexandra Beurton, M.D., Jean-Damien Ricard, M.D., Ph.D., Muriel Fartoukh, M.D., Ph.D., Alexandre Demoule, M.D., Ph.D.

- Significant pleural effusion is observed in approximately 13% of patients at the time of liberation from mechanical ventilation and is not associated with any significant impact on the results of weaning.
- Other mechanisms should be carefully excluded before attributing weaning failure to pleural effusion.

RESEARCH

O Annals of Intensive Care

Open Access

CrossMark

Pleural effusion during weaning from mechanical ventilation: a prospective observational multicenter study

Keyvan Razazi^{1,2,3}*[®], Florence Boissier^{4,5}, Mathilde Neuville⁶, Sébastien Jochmans^{2,7}, Martial Tchir⁸, Faten May^{1,2}, Nicolas de Prost^{1,2}, Christian Brun-Buisson^{1,2}, Guillaume Carteaux^{1,2} and Armand Mekontso Dessap^{1,2,3}

Variables	Missing values, n (%)	Absolute standardized differences	Odd ratio (95% confidence interval), <i>p</i> value by logistic regression		
			Univariate	Multivariable	
Age (per year)	0	47	1.03 (1.01–1.05), p=0.01	1.02 (0.997–1.05), p=0.08	
Body mass index (per kg/m²)	6 (2%)	32	1.06 (1.01–1.11), p=0.02	I/NR	
COPD (yes vs. no)	0	48	3.0 (1.6-5.8), p=0.001	2.2 (1.02–4.7), p=0.045	
Cardiac disease (yes vs. no)	0	37	2.2 (1.2-4.0), p=0.01	I/NR	
Left ventricle ejection fraction at cardiac ultrasound (%)	44 (18%)	27	0.98 (0.96–1.0), p=0.09	N	
Supra-ventricular arrhythmias (yes vs. no)	0	26	1.9 (1.01–3.6), p=0.046	N	
Septic shock (yes vs. no)	0	37	2.1 (1.2–3.7), p=0.01	I/NR	
Fluid balance between ICU admission and first SBT (per L)	15 (6%)	44	1.07 (1.03–1.12), p=0.002	N	
Acute respiratory failure as cause of intubation (yes vs. no)	0	55	3.0 (1.7–5.2), p < 0.001	NI	
PaO ₂ /FiO ₂ ratio (per mmHg)	3 (1%)	58	0.994 (0.991–0.997), <i>p</i> < 0.001	0.996 (0.993-1.0), p=0.03	
Duration of MV before the first SBT (per day)	0	57	1.11 (1.06–1.17), <i>p</i> < 0.001	1.11 (1.05–1.17), <i>p</i> < 0.001	
ARDS before the first SBT (yes vs. no)	0	49	3.0 (1.6–5.7), p<0.001	NI	
Neuromuscular blockade before the first SBT (yes vs. no)	0	54	3.5 (1.9–6.6), p < 0.001	N	
VAP before the first SBT (yes vs. no)	0	33	2.6 (1.2–5.4), p=0.01	N	
Moderate-to-large pleural effusion (yes vs. no)	0	58	3.2 (1.8–5.7), p < 0.001	3.0 (1.5-5.8), p=0.001	

 Moderate-to-large pleural effusion was found in one third of patients at initiation of weaning and associated with worse outcomes. 3. Screening bronchoscopy strategy in Mechanical Ventilation

Review > Am Surg. 2022 Apr;88(4):653-657. doi: 10.1177/00031348211058639. Epub 2021 Dec 8.

Bronchoscopy Decreases Ventilator-Associated Pneumonia in Trauma Patients

Siddhartha Nannapaneni ¹, Jennifer Silvis ², Karleigh Curfman ¹, Timothy Chung ¹, Thomas Simunich ³, Shawna Morrissey ¹, Russell Dumire ³

• 13% lower VAP rate in the bronchoscopy group (*YB*) as compared to the group that did not receive bronchoscopy (NB) (P < .025

AAST PODIUM PAPER 2022

Early pneumonia diagnosis decreases ventilator-associated pneumonia rates in trauma population

Kevin N. Harrell, MD, William B. Lee, MD, Hunter J. Rooks, MD, W. Eric Briscoe, MD, Walter Capote, MD, Benjamin W. Dart, IV, MD, Darren J. Hunt, MD, and Robert A. Maxwell, MD, Chattanooga, Tennessee

 Early FOB and BAL allow the identification of EP in patients at high risk for aspiration and VAP and allow for prompt treatment of early respiratory tract infection

4. Flail chest in Mechanical Ventilation

European Journal of Cardio-Thoracic Surgery 51 (2017) 696-701 doi:10.1093/ejcts/ezw365 Advance Access publication 14 December 2016 **ORIGINAL ARTICLE**

Cite this article as: Kocher GJ, Sharafi S, Azenha LF, Schmid RA. Chest wall stabilization in ventilator-dependent traumatic flail chest patients: who benefits? Eur J Cardiothorac Surg 2017;51:696-701.

Chest wall stabilization in ventilator-dependent traumatic flail chest patients: who benefits?[†]

Gregor J. Kocher, Siamak Sharafi, Luis Filipe Azenha and Ralph A. Schmid*

Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland

* Corresponding author. Division of General Thoracic Surgery, University Hospital Bern, CH-3010 Bern, Switzerland. Tel: +41-31-6322330; fax +41-31-6322327; e-mail: ralph.schmid@insel.ch (R.A. Schmid).

Received 7 July 2016; received in revised form 15 August 2016; accepted 16 September 2016

 selected patients suffering from traumatic flail chest may profit from early rib fixation if chest wall instability is the main reason for ventilator-dependency

Outcome	Univariable		Multivariable*	
	Odds ratio (95% CI)	P value	Odds ratio (95% CI)	P value
Admission to ICU	0.98 (0.94-1.03)	0.45	1.01 (0.96–1.06)	0.76
ARDS	1.10 (0.90–1.33)	0.35	1.10 (0.88–1.37)	0.40
Hospital mortality	1.04 (0.97-1.13)	0.26	1.05 (0.97-1.15)	0.24
Discharge home	1.02 (0.97-1.06)	0.50	1.01 (0.96–1.06)	0.74
Discharge other	1.01 (0.93-1.09)	0.88	0.97 (0.89–1.06)	0.49
Discharge rehabilitation	0.97 (0.93-1.01)	0.16	0.97 (0.92-1.02)	0.20
Pneumonia	0.95 (0.91-1.00)	0.07	0.96 (0.91-1.02)	0.17
Sepsis	0.99 (0.92-1.07)	0.84	1.00 (0.92–1.09)	0.99
	Annual % change (95% CI)		Annual % change (95% CI)	
ICU length of stay	-0.07 (-0.10 to - 0.05)	< 0.0001	- 0.06 (- 0.08 to - 0.03)	< 0.0001
Duration of ventilation -0 .	-0.03 (-0.06 to 0.01)	0.15	-0.04 (-0.08 to - 0.01)	0.02*
Hospital length of stay	-0.02 (-0.05 to 0)	0.07	-0.02 (-0.04 to 0.01)	0.20

European Journal of Trauma and Emergency Surgery (2023) 49:1047–1055 https://doi.org/10.1007/s00068-022-02152-1

ORIGINAL ARTICLE

Check for

Flail chest injury—changing management and outcomes

Silvana F. Marasco^{1,2} - Jacqueline Nguyen Khuong¹ · Mark Fitzgerald^{2,3,4} · Robyn Summerhayes¹ · Mir Wais Sekandarzad⁵ · Vincent Varley² · Ryan J. Campbell² · Michael Bailey⁶

Received: 6 March 2022 / Accepted: 21 October 2022 / Published online: 1 November 2022 © Crown 2022 Medical Management in Mechanical Ventilation

Prolonged Mechanical Ventilation: Outcomes and Management

Hung-Yu Huang ^{1,2,3}, Chih-Yu Huang ^{2,4} and Li-Fu Li ^{2,4,*}

- ¹ Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; compaction71@gmail.com
- ² Department of Internal Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; huv71@yahoo.com.tw
- ³ Department of Thoracic Medicine, New Taipei City Municipal Tucheng Hospital, Chang Gung Medical Foundation, New Taipei City 236, Taiwan
- ⁴ Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai-Chin Road, Keelung 204, Taiwan
- * Correspondence: lfp3434@cgmh.org.tw; Tel.: +886-2-2431-3131 (ext. 6201); Fax: +886-2-2433-5342

Table 2

Management of prolonged mechanical ventilation.

Systemic comorbidities treatment

Infection treatment

Nutrition support

Physical exercise programs

Breathing control

Passive leg raising

Weighted resistance

Stationary cycle ergometry training

Respiratory muscle training

Active limb exercise

Physiotherapy with positive pressure

Additional pressure support during exercise

Intermittent positive pressure breathing during exercise

Cough augmentation techniques

Electrical muscle stimulation therapy

Take Home Message

- Mechanical ventilation is essential for patients with indications.
- Mechanical ventilation can sometimes be harmful to patients.
- There is no single golden rule.
- Continuous monitoring and appropriate application to the situation can yield good results.
- In prolonged mechanical ventilation, various factors should be considered

경청해 주셔서 감사합니다!