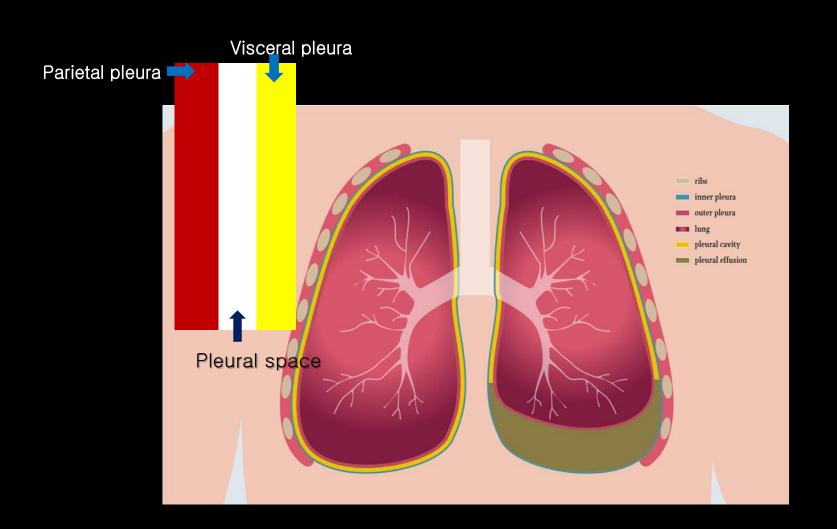



# Ultrasonographic finding in thoracic trauma and procedure

DO WAN KIM


Department of Thoracic and Cardiovascular Surgery
Chonnam National University Medical School
Gwangju, Korea

#### **Contents**



# Approach?





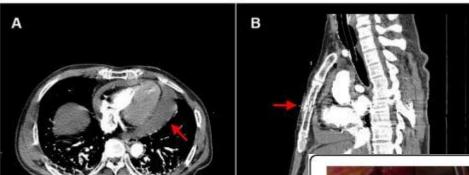
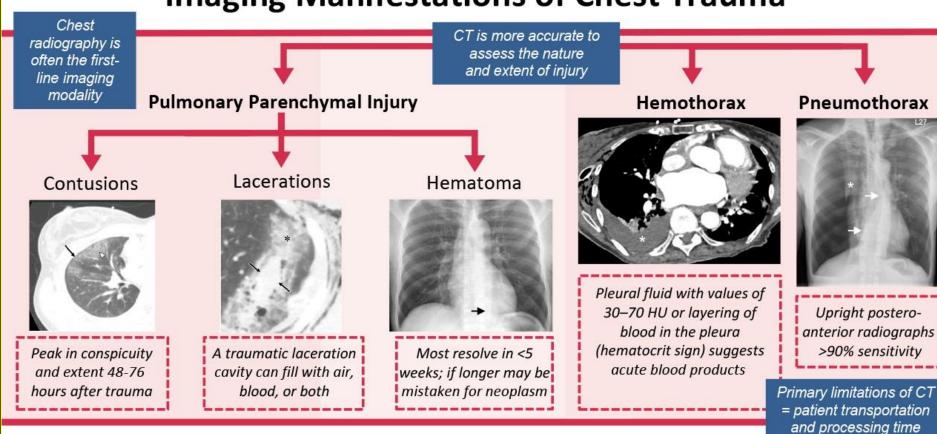



Figure 1 Chest computed tomography at admission. (A) The hemopericardium (re (red arrow) in the saggital view.



**Figure 2 An intraoperative image.** White arrow demonstrating a rupture in the distal one-third portion of the coronary sinus: an oval-shaped defect, 2 cm in its longest dimension, with sharp lacerations in the margin.

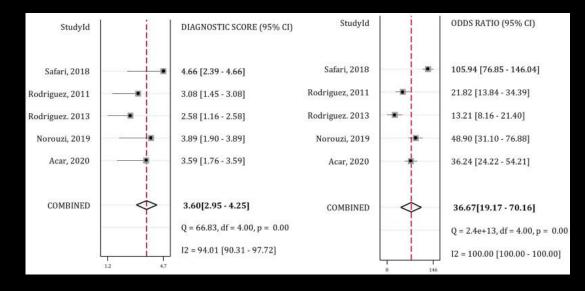

#### Reviewer

```
Reviewer's report-
Title:
Traumatic rupture of the coronary sinus following blunt chest trauma-
Version:3₽
Date:⊌
11 August 2014
Reviewer's report:
Major Compulsory Revisions
I think this is a well-written paper even in rare cases of cardiac rupture after blunt.
trauma. However, the management in this case was unclear, and the title was.
not directly correlated with the text.
Three questions are here.
Comment 1: 4
Why did you have to check computed tomography (CT) prior to checking
results of FAST?
I think there needs some explanation why you took CT instead of FAST.
```

#### **EFAST**

# (Extended Focused Assessment Sonography for Trauma)

#### **Imaging Manifestations of Chest Trauma**




Lewis BT et al. Published online: July 16, 2021 https://doi.org/10.1148/rg.2021210042

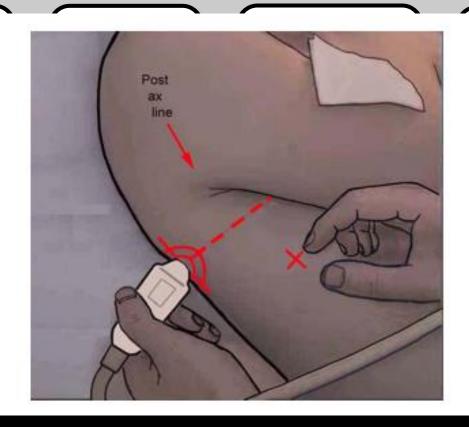
RadioGraphics

#### **Direction**

- Simple
- Non invasive
- Portable
- Fast



NEXUS trial (National Emergency X-ray Utilization


Studies)

**SAFETY** 

# **Utility**

Trauma series

- Ultrasou
- FAST/E
- Ultrasou



**Definitive treatment** 

• Ultrasound Organ Preservation?

#### **FAST**

- 1990's blunt abdominal trauma
- Minimal amount of fluid
- High sensitivity
- High specificity
- But, low sensitivity in specific organs (<50%)
- Helps determine the need for angiography, CT

#### **Chest trauma**

- Focused on chest wall (rib fracture)
- 1980s, diagnostic sub-xiphoid pericardiostomy: evaluate for a pericardial effusion following a penetrating injury to the thorax
- Resulted in many negative procedures
- Unnecessary procedures <u>versus</u> life saving chance

#### Ultrasound in chest trauma

- Trauma field of General surgery
  - Solid organ protection
  - Spleen, liver
- Trauma field of Chest surgery
  - Fluid status perfusion assessment
  - Not only solid organ but also function evaluation
  - Central organ maintain

#### Indication

- Penetrating heart trauma
- Blunt chest trauma
- Thoraco-abdominal trauma
- Chest skeletal trauma
- Undefined cause hypotension

# Thoracic injury?

- Ultrasound evaluation: when CT can not taken
  - High sensitivity and 97.3% for detecting hemopericardium
- Lung parenchymal and pleura injury
- Combination of echocardiography : shock
- Procedure: central venous catheter, tracheostomy
- More and more...

# OR





Greenland



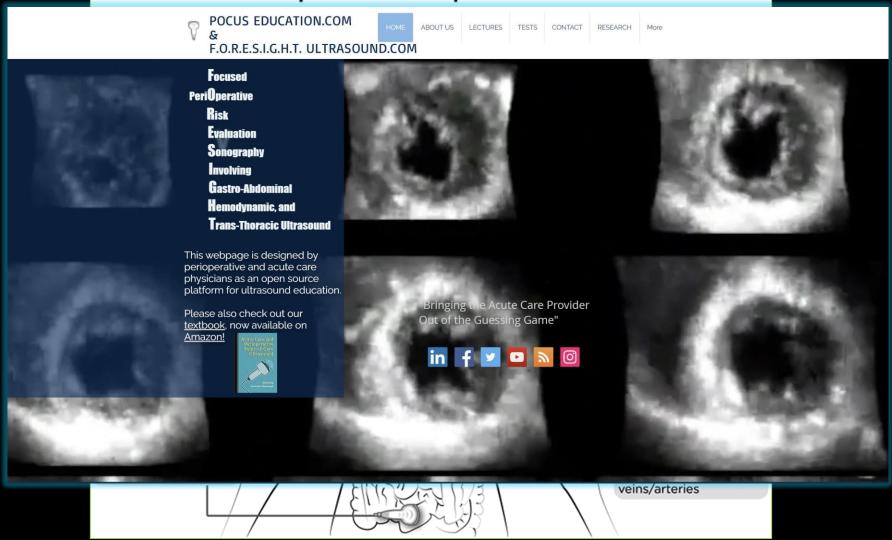
About Archive Contact WINFOCUS Website

#### UNITED WE SCAN

18th WINFOCUS World Virtual Congress

November 22<sup>nd</sup> – 23<sup>rd</sup> 2024

Registrations opening soon


Advanced trauma life support : USTLS

Inspiring Quality: Highest Standards, Better Outcomes



#### FORESIGHT

#### F.O.R.E.S.I.G.H.T. Comprehensive Perioperative Ultrasound Examination



The combined utility of extended focused assessment with sonography for trauma and chest x-ray in blunt thoracic trauma

Morgan Schellenberg, MD, Kenji Inaba, MD, James M. Bardes, MD, Nicholas Orozco, MD, Jessica Chen, Caroline Park, MD, Tarina Kang, MD, and Demetrios Demetriades, MD, PhD, Los Angeles, California

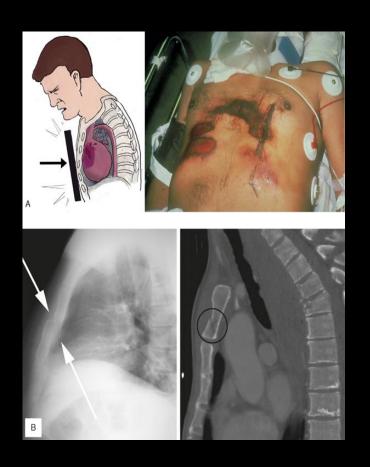

- EFAST combined CXR
- 15 years
- N = 1,311

TABLE 2. Total Injuries and Missed Injuries Among Stable Blunt Trauma Patients

| Injury                  | Total, n (%) | Missed on EFAST/CXR,<br>any (n, %) | Missed on EFAST/CXR,<br>Significant Injuries (n, %) |  |
|-------------------------|--------------|------------------------------------|-----------------------------------------------------|--|
| Rib fracture(s)         | 382 (29%)    | 229 (60%)                          | 24 (10%)                                            |  |
| Pneumothorax            | 242 (18%)    | 153 (63%)                          | 32 (21%)                                            |  |
| Pulmonary contusion     | 213 (16%)    | 144 (68%)                          | 22 (15%)                                            |  |
| Sternal fracture        | 101 (8%)     | 82 (81%)                           | 82 (100%)                                           |  |
| Hemothorax              | 82 (6%)      | 43 (52%)                           | 17 (40%)                                            |  |
| Clavicle fracture       | 76 (6%)      | 37 (49%)                           | 37 (100%)                                           |  |
| Scapula fracture        | 72 (5%)      | 47 (65%)                           | 47 (100%)                                           |  |
| Thoracic spine fracture | 46 (4%)      | 29 (63%)                           | 19 (66%)                                            |  |
| Aortic injury           | 7 (<1%)      | 2 (29%)                            | 2 (100%)                                            |  |

**TABLE 3.** The Diagnostic Yield of EFAST, CXR, PEx, and Their Combinations Among Stable Blunt Trauma Patients in the Detection of Any Injuries

|             | <b>EFAST</b> | CXR  | PEx  | EFAST+CXR | EFAST+CXR+PEx |
|-------------|--------------|------|------|-----------|---------------|
| Sensitivity | 0.13         | 0.36 | 0.36 | 0.38      | 0.55          |
| Specificity | 1.00         | 1.00 | 0.89 | 0.99      | 0.82          |
| PPV         | 0.86         | 0.93 | 0.71 | 0.93      | 0.41          |
| NPV         | 0.83         | 0.90 | 0.65 | 0.89      |               |



- Motorcycle collisions and AVP trauma, missed injury based on EFAST and CXR is significant.
- A population in which CT scan of the chest can safely be forgone remains undefined.

#### Initial assessment

Integrating extended focused assessment with sonography for trauma (eFAST) in the initial assessment of severe trauma: Impact on the management of 756 patients



Laurent Zieleskiewicz<sup>a,b,\*</sup>, Raphaelle Fresco<sup>a</sup>, Gary Duclos<sup>a</sup>, François Antonini<sup>a</sup>, Calypso Mathieu<sup>a,c</sup>, Sophie Medam<sup>a</sup>, Coralie Vigne<sup>a</sup>, Marion Poirier<sup>a</sup>, Pierre-Hugues Roche<sup>c,d</sup>, Pierre Bouzat<sup>e,f</sup>, François Kerbaul<sup>c,g</sup>, Ugo Scemama<sup>h</sup>, Thierry Bège<sup>c,i,j</sup>, Pascal Alexandre Thomas<sup>c,k</sup>, Xavier Flecher<sup>c,l</sup>, Emmanuelle Hammad<sup>a</sup>, Marc Leone<sup>a,c,m</sup>

|                          | Patients (n = 756) |
|--------------------------|--------------------|
| Blunt trauma             | 690 (91.3%)        |
| Injury type              |                    |
| Motor accident           | 526 (69.7%)        |
| Fall                     | 123 (16.3%)        |
| Sports-related           | 13 (1.7%)          |
| Other                    | 94 (12.4%)         |
| Age (years)              | 37 [23; 49]        |
| Male sex                 | 620 (82.0%)        |
| In-hospital mortality    | 108 (14.3%)        |
| SAPS II                  | 33 [21; 50]        |
| ISS                      | 25 [16; 34]        |
| Cardiac arrest           | 35 (4.6%)          |
| Haemodynamic instability | 257 (34.0%)        |
| Norepinephrine infusion  | 165 (21.8%)        |
| Catheters before WBCT    | 506 (66.9%)        |
| Brain trauma             | 374 (49.5%)        |
| GCS score                | 10 [7; 15]         |
| Chest trauma             | 430 (56.9%)        |
| Mechanical ventilation   | 378 (50.0%)        |
| Prehospital chest tube   | 20 (2.6%)          |
| Subcutaneous emphysema   | 66 (8.7%)          |

Values shown are n (%) or median [25<sup>th</sup>; 75<sup>th</sup> percentile]. SAPS II Simplified Acute Physiology Score, ISS Injury Severity Score, WBCT whole-body computed tomography, GCS Glasgow Coma Scale.

- French
- N = 756
- Blunt trauma = 91.3%
- Chest trauma = 56.9%

#### Initial assessment

|                               | Sensitivity % | Specificity % | Youden index | Positive predictive value % | Negative<br>predictive<br>value % | Positive<br>likelihood ratio | Negative<br>likelihood<br>ratio | Diagnostic accuracy |
|-------------------------------|---------------|---------------|--------------|-----------------------------|-----------------------------------|------------------------------|---------------------------------|---------------------|
| Pneumothorax (n = 198)        |               |               |              |                             |                                   |                              |                                 |                     |
| LUS (n = 1495)                | 69            | 99            | 0.7          | 94                          | 96                                | 112                          | 0.3                             | 96                  |
| CXR (n = 1488)                | 37            | 100           | 0.4          | 95                          | 91                                | 120                          | 0.4                             | 91                  |
| Haemothorax (n = 103)         |               |               |              |                             |                                   |                              |                                 |                     |
| LUS (n = 1495)                | 48            | 100           | 0.5          | 90                          | 97                                | 135                          | 0.5                             | 96                  |
| CXR (n = 1488)                | 29            | 100           | 0.3          | 90                          | 95                                | 133                          | 0.7                             | 95                  |
| Peritoneal effusion (n = 116) |               |               |              |                             |                                   |                              |                                 |                     |
| FAST (n = 756)                | 70            | 96            | 0.7          | 78                          | 95                                | 19                           | 0.3                             | 92                  |

Values shown are %. LUS lung ultrasonography, CXR chest x-ray, FAST focused assessment with sonography for trauma. We found no difference between the right and left chest walls regarding the occurrence of each thoracic lesion, which allowed us to analyze the lung fields as separate entities; 1495 lung fields were assessed for LUS and 1488 lung fields for CXR.

| Imaging technique                               | Therapeutic impact | Appropriate positive decision | Inappropriate positive decision | Appropriate negative decision | Inappropriate<br>negative decision |
|-------------------------------------------------|--------------------|-------------------------------|---------------------------------|-------------------------------|------------------------------------|
| LUS (n = 751)                                   | 5 (0.7%)           | 5 (100%)                      | 0                               | 745 (99.9%)                   | 1 (0.1%)                           |
| CXR (n = 745)                                   | 5 (0.7%)           | 53 (100%)                     | 0                               | 678 (98%)                     | 14 (2%)                            |
| LUS + CXR (n = 741)                             | 48 (6 %)           | 48 (100%)                     | 0                               | 693 (100%)                    | 0                                  |
| Pericardial sonography (n = 683)                | 2 (0.3%)           | 2 (100%)                      | 0                               | 681 (100%)                    | 0                                  |
| PXR (n = 745)                                   | 0                  | 0                             | 0                               | 744 (99.9%)                   | 1 (0.1%)                           |
| Abdominal sonography (n = 756)                  | 16 (2%)            | 15 (94%)                      | 1 (6%)                          | 740 (100%)                    | 0                                  |
| Global therapeutic impact of initial assessment | 76 (10%)           | 123 (99.2%)                   | 1 (0.8%)                        | 741 (99.6%)                   | 1 (0.4%)                           |

Values shown are n (%). LUS lung ultrasonography, CXR chest x-ray, FAST focused assessment with sonography for trauma.

### Initial assessment

- Pelvic AP had a minimal therapeutic impact.
- In those patients with a normal LUS, the CXR marginally affected the management of patients.
- LUS based strategy involving the WBCT should be investigated as a second strategy involving the transfer of the transfer of

#### **ORIGINAL ARTICLE**

**Open Access** 

Value of point-of-care ultrasonography compared with computed tomography scan in detecting potential life-threatening conditions in blunt chest trauma patients

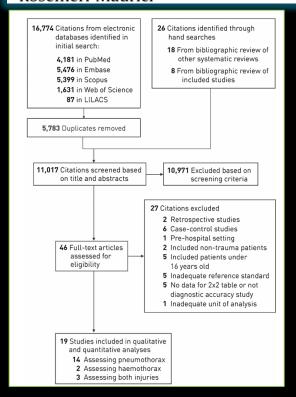


- Sonography versus CT scan
- Blunt chest trauma
- Bedside exam
- N = 157

| Assessment                          | Definition                                                                                                                                                           | Simple<br>pneumothorax | Tension<br>pneumothorax | Hemothorax   | Massive<br>hemothorax | Pulmonary<br>contusion |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|--------------|-----------------------|------------------------|
| Findings of physical ex             | xamination                                                                                                                                                           |                        |                         |              |                       |                        |
| Inspection                          | Chest expansion                                                                                                                                                      | NI-↓                   | <b>↓</b>                | $\downarrow$ | <b>↓</b>              | NI                     |
|                                     | Trachea                                                                                                                                                              | NI                     | Deviated                | NI           | Deviated              | NI                     |
|                                     | Jugular vein pressure                                                                                                                                                | NI                     | <b>↑</b>                | NI           | <b>↓</b>              | NI                     |
| Percussion                          | The sound of striking<br>2 fingers on inter-<br>costal spaces                                                                                                        | NI-hyperresonance      | Hyperresonance          | NI-dull      | Dull                  | NI                     |
| Auscultation                        | To hear both sides<br>comparatively and<br>note sounds' quality                                                                                                      | <b>↓</b>               | NI-dull                 | NI-↓         | <b>†</b>              | NI-crackles            |
| Findings of ultrasonog              | graphy                                                                                                                                                               |                        |                         |              |                       |                        |
| Pleural sliding                     | The shimmering<br>movement of pari-<br>etal pleura during<br>inspiration                                                                                             | Lost in injured zone   | Lost                    | NI           | May be NI             | Maybe falsely ↓        |
| Seashore sign                       | Normal lung M-mode<br>of sandy appear-<br>ance above and<br>parallel lines below                                                                                     | Lost in injured zone   | Lost                    | NI           | May be NI             | May be NI              |
| Barcode/strato-<br>sphere sign      | Abnormal M-mode<br>showing multiple<br>parallel lines                                                                                                                | + in injured zone      | +                       | -            | -                     | May be falsely +       |
| Lung point                          | The interface of<br>normal lung and<br>pneumothorax area<br>in B-M mode                                                                                              | May be +               | Often -                 | -            | -                     | -                      |
| Sinusoid sign                       | The sinusoidal<br>movement of the<br>collapsed lung in<br>the pleural fluid                                                                                          | -                      | -                       | +            | +                     | -                      |
| V-line                              | Echogenic vertebral<br>line with posterior<br>shadow due to the<br>transmission of<br>ultrasound waves<br>through the pleural<br>fluid                               | -                      | -                       | May be +     | +                     | -                      |
| B-lines/comet tails                 | Vertical echogenic<br>artifact lines from<br>the pleura to the<br>screen edge, if mul-<br>tiple, resulting from<br>alveolo-interstitial<br>syndrome (rocket<br>sign) | Lost                   | Lost                    | NI           | May be NI             | <b>↑</b>               |
| Peripheral paren-<br>chymal lesions | Lung hepatization<br>with subpleural<br>hypoechoic foci<br>and pleural line gap                                                                                      | -                      | -                       | -            | -                     | +                      |

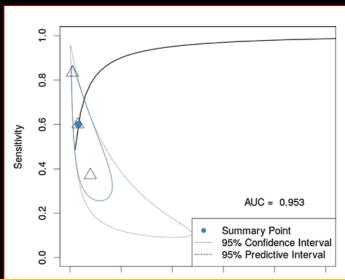
| Type of injury               | Diagnostic tool              | Analysis       | Point estimate | 95% Cl <sup>a</sup> |
|------------------------------|------------------------------|----------------|----------------|---------------------|
| Pneumothorax                 | Sonography                   | Sensitivity, % | 75.0           | 55.1–89.0           |
|                              |                              | Specificity, % | 100            | 97.2-100            |
|                              |                              | PPV%           | 100            | 83.9-100            |
|                              |                              | NPV%           | 94.9           | 89.7-97.9           |
|                              |                              | Accuracy%      | 95.5           | 91.0-98.2           |
| Hemothorax                   |                              | Sensitivity, % | 45.4           | 24.4-67.8           |
|                              |                              | Specificity, % | 100            | 97.3-100            |
|                              |                              | PPV%           | 100            | 69.2-100            |
|                              |                              | NPV%           | 91.8           | 86.2-95.7           |
|                              |                              | Accuracy%      | 92.4           | 87.0-96.0           |
| Contusion                    |                              | Sensitivity, % | 58.1           | 42.1-73.3           |
|                              |                              | Specificity, % | 100            | 96.8-100            |
|                              |                              | PPV%           | 100            | 86.3-100            |
|                              |                              | NPV%           | 86.3           | 79.3-91.7           |
|                              |                              | Accuracy%      | 88.5           | 82.5-93.1           |
| Pneumothorax, hemothorax and | Physical exam and sonography | Sensitivity, % | 91.5           | 81.3-97.2           |
| contusion                    |                              | Specificity, % | 90.8           | 83.3-95.7           |
|                              |                              | PPV            | 85.7           | 74.6-93.3           |
|                              |                              | NPV            | 94.7           | 88.0-98.3           |
|                              |                              | Accuracy       | 91.8           | 85.5–95.0           |

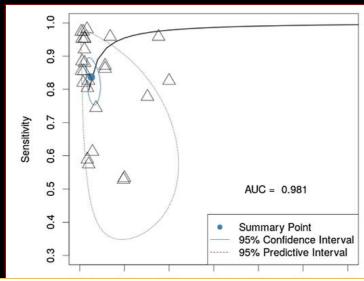
- LUS: high accuracy (91.8%)
- Positive predictive value: 100%
- POCUS: hemothorax & lung contusion, gold standard > CT


#### **SR and MA**

#### Review

Chest ultrasonography for the emergency diagnosis of traumatic pneumothorax and haemothorax: A systematic review and meta-analysis





Leonardo Jönck Staub<sup>a,f,\*</sup>, Roberta Rodolfo Mazzali Biscaro<sup>b</sup>, Erikson Kaszubowski<sup>e</sup>, Rosemeri Maurici<sup>c,d</sup>



| Study                     | Ultrasound<br>transducer                | Chest areas scanned                                                                                                                  | Target injury and sonographic pattern of<br>positivity                                                                                                                               |
|---------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abbasi et al.             | Linear: 7.5 MHz                         | 2nd to 4th intercostal spaces at the hemi-clavicular lines                                                                           | Pneumothorax: absence of lung sliding and<br>comet-tail artefacts                                                                                                                    |
| Blaivas et al.            | Micro-convex                            | 2th intercostal spaces at hemi-clavicular lines                                                                                      | Pneumothorax: absence of lung sliding                                                                                                                                                |
| [28]                      | broadband:                              | 4th intercostal spaces at anterior axillar lines                                                                                     |                                                                                                                                                                                      |
|                           | 2-4 MHz                                 | 6th intercostal spaces at mid axillar lines                                                                                          |                                                                                                                                                                                      |
|                           |                                         | 6th intercostal spaces at posterior axillar lines                                                                                    |                                                                                                                                                                                      |
| Helland et al.            | Linear:                                 | Patients were randomised to receive a one scan protocol                                                                              | Pneumothorax: absence of lung sliding                                                                                                                                                |
| [31]                      | 7.5 MHz                                 | in the 3rd intercostal space at hemi-clavicular line, or a 4 scans<br>protocol in this point plus 3 other points, in each hemithorax |                                                                                                                                                                                      |
| Kaya et al.               | Linear: 7.5 MHz                         | 2nd to 4th intercostal spaces at hemi-clavicular line<br>4th to 8th intercostal spaces at mid axillar lines                          | Pneumothorax: absence of lung sliding and<br>comet-tail artefacts                                                                                                                    |
| Kirkpatrick               | Linear: 5-10 MHz                        | E-FAST: 2nd intercostal spaces at hemi-clavicular lines                                                                              | Pneumothorax: absence of lung sliding and                                                                                                                                            |
| et al. [18]               |                                         | 4th or 5th intercostal spaces at mid axillar lines                                                                                   | comet-tail artefacts                                                                                                                                                                 |
| Ku et al. [30]            | Convex: 2-4 MHz                         | All intercostal spaces at hemi-clavicular lines                                                                                      | Pneumothorax: absence of lung sliding and                                                                                                                                            |
|                           |                                         | At left: if heart was viewed, finished at anterior axillar line                                                                      | comet-tail artefacts, and lung point                                                                                                                                                 |
| Mumtaz et al.             | Linear: 5 MHz                           | E-FAST: 3rd and 4th intercostal spaces in hemi-clavicular lines                                                                      | Pneumothorax: absence of lung sliding and<br>comet-tail artefacts, and lung point*                                                                                                   |
| Nagarsheth<br>et al. [21] | Convex: 2.5 MHz, or<br>Linear: 10.5 MHz | E-FAST: 2nd to 4th intercostal spaces at hemi-clavicular line                                                                        | Pneumothorax: absence of lung sliding and a<br>comet-tail artefacts                                                                                                                  |
| Nandipati<br>et al. [22]  | Linear: 7.5 MHz                         | E-FAST: 2nd intercostal spaces at hemi-clavicular lines                                                                              | Pneumothorax: absence of lung sliding and a<br>comet-tail artefacts                                                                                                                  |
| Rowan et al.<br>[23]      | Linear: 7.0 MHz                         | 2nd to 4th intercostal spaces in anterior chest regions<br>6th to 8th intercostal spaces at mid axillar lines                        | Pneumothorax: absence of lung sliding and<br>comet-tail artefact                                                                                                                     |
| Soldati et al.            | Convex 5.0 MHz                          | E-FAST: 3rd intercostal spaces to diaphragm at<br>hemi-clavicular lines                                                              | Pneumothorax: absence of lung sliding and<br>comet-tail artefact                                                                                                                     |
|                           |                                         | All intercostal spaces at para-sternal lines and mid axillar lines                                                                   |                                                                                                                                                                                      |
| Soldati et al.            | Convex: 3.5 MHz                         | 3rd intercostal spaces to down at hemi-clavicular lines                                                                              | Pneumothorax: absence of lung sliding and                                                                                                                                            |
| [25]                      | or 5.2 MHz                              | All intercostal spaces at para-sternal lines and mid axillar lines                                                                   | comet-tail artefact, and lung point                                                                                                                                                  |
| Zhang et al.<br>[26]      | Convex: 3.5 MHz, or<br>Linear: 7.5 MHz  | Anterior, lateral and posterior chest regions                                                                                        | Pneumothorax: absence of lung sliding and r<br>comet-tail artefacts                                                                                                                  |
| Ziapour et al.<br>[27]    | Linear: 9.0 MHz                         | 3rd intercostal spaces at hemi-clavicular lines using two oblique scans                                                              | Pneumothorax: absence of lung sliding and<br>comet-tail artefact                                                                                                                     |
| Hyacinthe<br>et al. [16]  | Convez: 2-5 MHz                         | Three areas (upper, mid and lower) in each anterior and lateral region.                                                              | Pneumothorax: absence of lung sliding and<br>comet-tail artefacts, and the lung point<br>Haemothorax: gravity dependent collection                                                   |
| Leblanc et al.<br>[19]    | 1-5 MHz                                 | Four areas in each hemithorax (not specified)                                                                                        | between diaphragm and pleura<br>Pneumothorax: absence of lung sliding, com<br>tail artefacts and lung pulse, and lung point<br>Haemothorax: gravity dependent anechoic<br>collection |
| Ojaghi-<br>Haghighi       | Convex: 5 MHz, and<br>Linear: 6.5–9 MHz | E-FAST: locations of the scans were not described                                                                                    | Pneumothorax: no lung sliding and no comet-<br>artefacts                                                                                                                             |
| et al. [29]               |                                         | P. PACT: abiliary along to be and board about an along                                                                               | Haemothorax: anechoic area in pleural space                                                                                                                                          |
| Brooks et al.<br>[32]     | Micro-convex:<br>2-4 MHz                | E-FAST: oblique views in lateral-basal chest regions,<br>using liver or spleen as window                                             | Haemothorax: free fluid in the pleural space                                                                                                                                         |
| Ma et al. [33]            | 2.5-3.5 MHz                             | E-FAST: oblique views in the lateral chest regions,                                                                                  | Haemothorax: free fluid in the pleural space                                                                                                                                         |
|                           |                                         | using liver or spleen as window                                                                                                      |                                                                                                                                                                                      |

## **SR and MA**

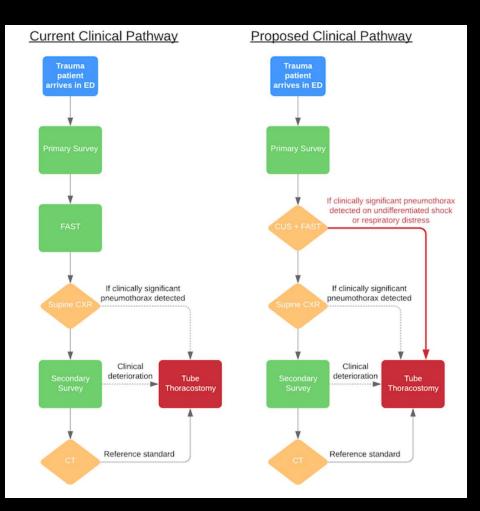


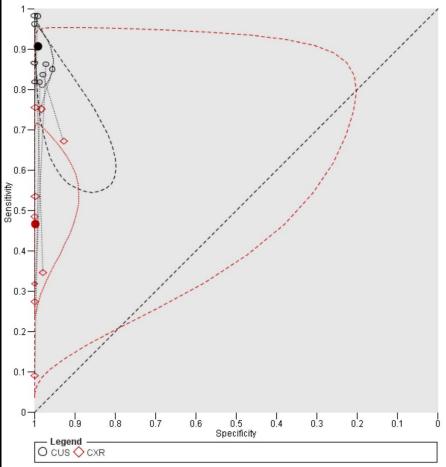


| Analysis                   | Sonographic sign                                        | Number of studies<br>and references | Confirmed/total analysed | Sensitivity<br>(95%CI) | Specificity<br>(95%CI) | Positive likelihood<br>ratio (95%CI) | Negative likelihood<br>ratio (95%CI) |
|----------------------------|---------------------------------------------------------|-------------------------------------|--------------------------|------------------------|------------------------|--------------------------------------|--------------------------------------|
| Primary<br>(by hemithorax) | Absence of lung<br>sliding and comet<br>tail artefacts* | 13 [15–27]                          | 415/2965                 | 0.81<br>(0.71-0.88)    | 0.98<br>(0.97-0.99)    | 67.9<br>(26.3–148)                   | 0.18<br>(0.11-0.29)                  |
|                            | Absence of lung sliding                                 | 1 [28]                              | 53/352                   | 0.98<br>(0.90-0.99)    | 0.99<br>(0.98-0.99)    | 293<br>(41.4–2076)                   | 0.01<br>(0.002-0.13)                 |
|                            | Lung point                                              | 1 [20]                              | 42/92                    | 0.73<br>(0.57-0.86)    | 1.0<br>(0.92–1.0)      | 73.3<br>(4.7–1185) <sup>a</sup>      | 0.27<br>(0.16-0,44)                  |
| Secondary<br>(by patient)  | Absence of lung<br>sliding and comet<br>tail artefacts* | 12 [15,17,18,20–24,<br>26,28–30]    | 385/1942                 | 0.86<br>(0.77-0.91)    | 0.98<br>(0.97-0.99)    | 53.7<br>(29.7–91.6)                  | 0.14<br>(0.08-0.23)                  |
|                            | Absence of lung<br>sliding*                             | 2 [28,31]                           | 102/436                  | 0.88<br>(0.20-0.99)    | 0.98 (0.96k0.99)       | 80.7<br>(6.3-249)                    | 0.11<br>(0.004-0.82)                 |
|                            | Lung point                                              | 1 [20]                              | 42/46                    | 0.73<br>(0.57-0.86)    | 1.0<br>(0.39–1.0)      | 7.3<br>(0.5–102) <sup>a</sup>        | 0.29<br>(0.16–0.52)                  |

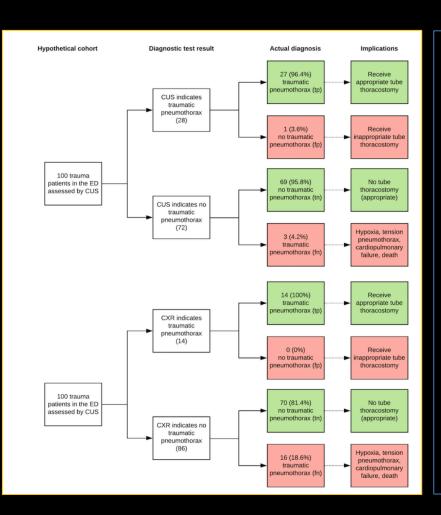
CI - confidence interval

## Traumatic pneumothorax





**Cochrane** Database of Systematic Reviews

Chest ultrasonography versus supine chest radiography for diagnosis of pneumothorax in trauma patients in the emergency department (Review)


• 3 studies of which nine (410 traumatic pneumothorax patients out of 1,271 patients) used patients as the unit of analysis.

### **Pneumothorax**





#### **Pneumothorax**



#### Conclusions

The accuracy of LUS in trauma patients is superior to CXR, independent of the type of trauma, type of LUS operator, or type of

LUS probe used.

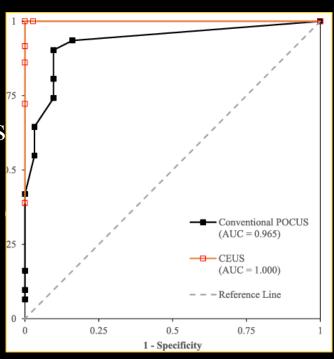


# The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition

#### *Imaging*

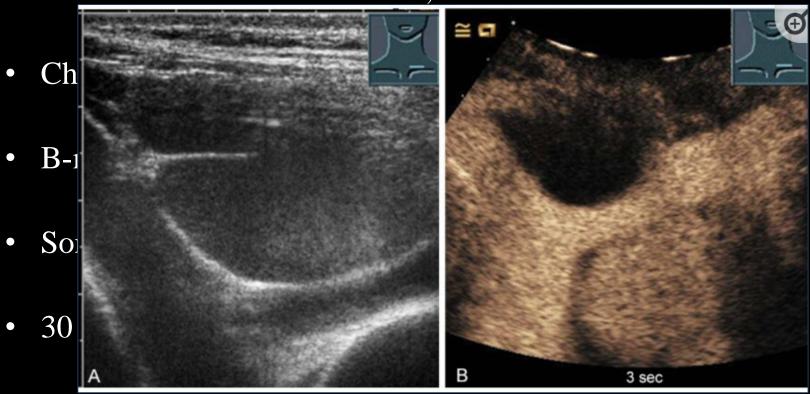
Recommendation 8 We suggest the use of pre-hospital ultrasonography (PHUS) for the detection of haemo-/pneumothorax, haemopericardium and/or free abdominal fluid in patients with thoracoabdominal injuries, if feasible without delaying transport (Grade 2B).

We recommend the use of point-of-care ultrasonography (POCUS), including FAST, in patients with thoracoabdominal injuries (Grade 1C).


We recommend early imaging using contrast-enhanced whole-body CT (WBCT) for the detection and identification of the type of injury and the potential source of bleeding (Grade 1B).

• POCUS remains for the detection of hemorrhage in pleural, pericardial cavity, with <a href="https://doi.org/10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new-rights-10.2016/journal-new

#### **CEUS**


- Contrast-Enhanced Ultrasound
- Gas-filled microbubbles with a phospholipid shell
- Renal insufficiency, hypotension
- Abdominal trauma: SR and meta-analys
- Higher sensitivity (0.933 vs. 0.559; P <

(0.995 vs. 0.979; P < 0.001)



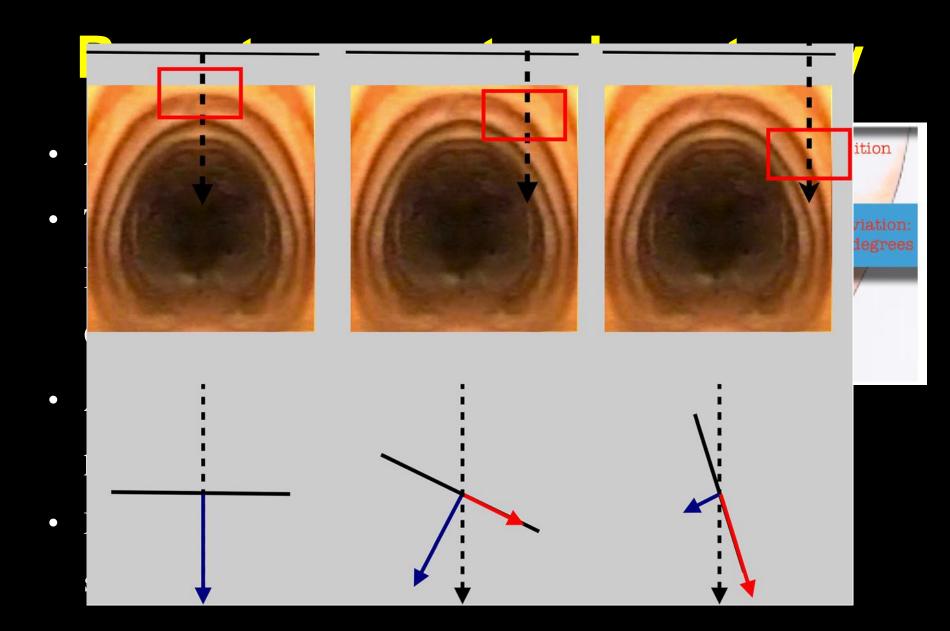
# **CEUS**

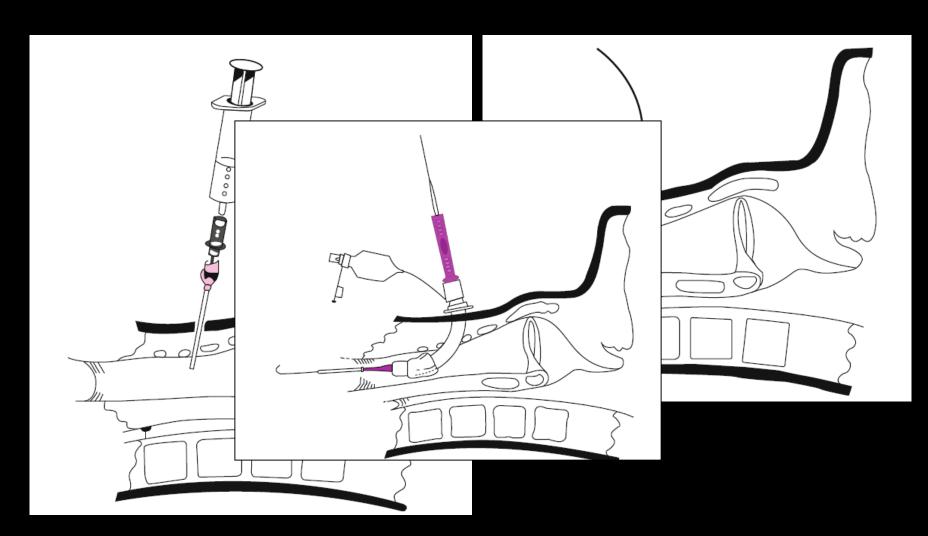
• Disease: mediastinal structure, etc



#### Ultrasound Guidance for Pleural-Catheter Placement

Adriano Peris, M.D., Lorenzo Tutino, M.D., Giovanni Cianchi, M.D., and Gianfranco Gensini, M.D.

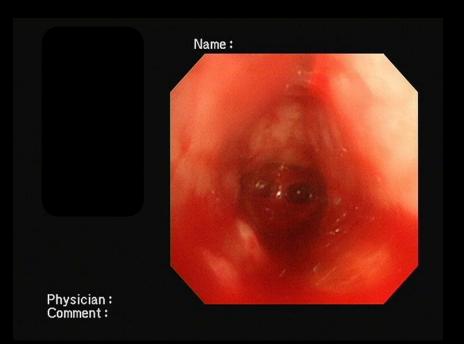

- Not direct confirmation of device
- Real time intervention
- Operation Co-Operation
- Diagnosis and Procedure


#### Central Catheter Confirmation

| Reference                      | Feasibility<br>(%)ª | Incidence<br>of Central<br>Venous<br>Catheter<br>Malposition | Sensitivity<br>(95% CI) <sup>b</sup> | Specificity<br>(95% CI) <sup>b</sup> | Incidence of<br>Pneumothorax | Chest<br>Radiograph<br>time<br>(Minutes),<br>Mean (sp) | Ultrasound<br>time<br>(Minutes),<br>Mean (sp) |                                                                                  |
|--------------------------------|---------------------|--------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|
| Vezzani<br>et al (30)          | 89.2                | 0.28                                                         | 0.93 (0.76-0.99)                     | 0.96 (0.88-0.99)                     | 0.04                         | 83.0 (79.0) <sup>c</sup>                               | 10.0 (5.0)                                    |                                                                                  |
| Maury<br>et al (16)            | 98.8                | 0.11                                                         | 1.00 (0.66-1.00)                     | 1.00 (0.95-1.00)                     | 0.01                         | 80.3(66.7) <sup>d</sup>                                | 6.8 (3.5)                                     |                                                                                  |
| Zanobetti<br>et al (31)        | 100                 | 0.55                                                         | 0.92 (0.85-0.96)                     | 0.89 (0.81-0.95)                     | 0.02                         | 65.0 (74.0)°                                           | 5.0 (3.0)                                     |                                                                                  |
| Cortellaro<br>et al (32)       | 100                 | 0.085                                                        | 0.33 (0.04-0.78)                     | 0.98 (0.92-1.00)                     | _                            | 288.0 (216.0)°                                         | 4.0 (1.0)                                     |                                                                                  |
| Matsushima and<br>Frankel (33) | 71                  | 0.17                                                         | 0.50 (0.19-0.81)                     | 0.98 (0.89-1.00)                     |                              |                                                        |                                               | sound is faster than radiography at                                              |
| Bedel<br>et al (34)            | 96                  | 0.06                                                         | 0.83 (0.36-1.00)                     | 1.00 (0.96-1.00)                     |                              |                                                        |                                               | er central venous catheter insertion.<br>eter malposition exists, bedside ultra- |
| Baviskar<br>et al (35)         | 100                 | 0.00                                                         | -                                    | -                                    |                              |                                                        |                                               | f every five earlier than chest radiog-                                          |
| Duran-Gehring<br>et al (36)    | 92                  | 0.065                                                        | 0.33 (0.01-0.91)                     | 1.00 (0.92-1.00)                     |                              | Crit Care I                                            |                                               | 45:715-724)                                                                      |
| Weekes<br>et al (37)           | 96.6                | 0.03                                                         | 0.75 (0.19-0.99)                     | 1.00 (0.97-1.00)                     |                              | viii ia <u>e</u> nuny                                  |                                               | revery five earlier than chest radiog-                                           |
| Wen<br>et al (38)              | 100                 | 0.01                                                         | 1.00 (0.16-1.00)                     | 1.00 (0.98-1.00)                     | -                            | 28.3 (25.7)                                            | 3.2 (1.1)                                     |                                                                                  |
| Syed<br>et al (39)             | 100                 | 0.50                                                         | 1.00 (0.16-1.00)                     | 1.00 (0.16-1.00)                     | -                            | -                                                      | -                                             |                                                                                  |
| Madhulika<br>et al (40)        | 100                 | 0.24                                                         | 1.00 (0.86-1.00)                     | 1.00 (0.95-1.00)                     | 0.00                         | -                                                      | -                                             |                                                                                  |
| Gekle<br>et al (41)            | 100                 | 0.00                                                         | -                                    | -                                    | -                            | 30.0 (–) <sup>f</sup>                                  | 8.9                                           |                                                                                  |
| Weekes<br>et al (42)           | 97.4                | 0.03                                                         | 0.75 (0.19-0.99)                     | 1.00 (0.98-1.00)                     | 0.00                         | 20.0 (30.0) <sup>c</sup><br>median (IQR)               | 1.1 (0.7)<br>median (IQR)                     |                                                                                  |
| Meggiolaro<br>et al (43)       | 100                 | 0.45                                                         | 0.53 (0.38-0.68)                     | 0.95 (0.86-0.99)                     | 0.00                         | 67.0<br>(42.0-84.0)°                                   | 10.0<br>(7.0–20.0)                            |                                                                                  |
|                                |                     |                                                              |                                      |                                      |                              | median (IQR)                                           | median (IQR)                                  |                                                                                  |


#### **Endotracheal tube**

- Accurate intubation
- Most reliable confirmation
  - ETCO2 : not available cardiac arrest, PE
- Transtracheal direct scan
  - Hyperechoic reverberation sign in trachea
- Transthoracic indirect scan
  - Check the lung sliding
















#### **Shock evaluation**

Dan L. Longo, M.D., Editor

#### Hemorrhagic Shock

Jeremy W. Cannon, M.D.

#### Rapid Identification of Hemorrhagic Shock

Prehospital history of major blood loss and treatment with anticoagulants or antiplatelets

Physical examination, radiographs, and ultrasonography of the torso

#### (FAST) to determine sources of bleeding

Laboratory work (blood type, blood gas with lactate, CBC, electrolytes, coagulation studies, and TEG or TEM)

Immediate resuscitation for patients in shock with the use of rapid infuser and fluid warmer

Early massive-transfusion-protocol activation for patients in shock

#### **Posthemostasis**

Reassess patient for ongoing bleeding, coagulopathy, and unpaid oxygen debt


Perform repeat laboratory tests (blood gas with lactate, CBC, electrolytes, coagulation studies, and TEG or TEM)

Transfusions should be compatible with blood group if possible

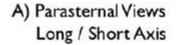
Avoid over- or under-resuscitation

Perform ultrasonography to assess intravascular volume

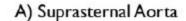
status and cardiac function



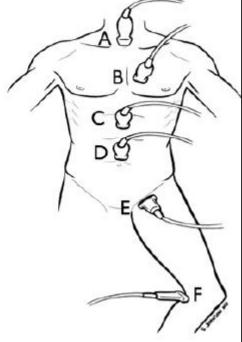
- Serial
- Evalu
- Non-i
  - Ple
  - He
  - He
- Volun

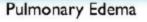

### **Shock evaluation**

| Authors               | Titles                                       | Focus        | Target        |
|-----------------------|----------------------------------------------|--------------|---------------|
| Breitkreutz R. et al. | Focused echocardiographic evaluation in life | Tamponade    | Peri          |
| Resuscitation. 2010   | support and peri-resuscitation of emergency  | Hypovolemia  | resuscitation |
| Nov;81(11):1527-      | patients: a prospective trial. (FEEL)        | Embolsim     | care          |
| 33.                   |                                              |              |               |
| Gunst M, et al.       | Bedside Echocardiographic Assessment for     | Beat         | Trauma        |
| J Am Coll Surg. 2008  | Trauma/Critical Care. (The BEAT)             | Effusion     |               |
| Sep;207(3):e1-3.      |                                              | Volume : IVC |               |
|                       |                                              |              |               |


#### **RUSH exam**

|      | Hypovolemia         | Distributive       | Obstructive   | Cardiogenic      |
|------|---------------------|--------------------|---------------|------------------|
| Pump | Hyperdynamic heart  | Hyperdynamic heart | Tamponade     | Poor             |
|      |                     | Poor contractility | RV strain     | contractility    |
|      |                     |                    | Poor          |                  |
|      |                     |                    | contractility |                  |
| Tank | Collasping IVC      | Normal IVC         | Large IVC     | Large, non-      |
|      | Peritoneal/pleural  | Peritoneal/pleural |               | collasping IVC   |
|      | fluid               | fluid              |               | Pleural effusion |
|      |                     |                    |               |                  |
| Pipe | Aorta               | Normal             | DVT           | Normal           |
|      | dissection/aneurysm |                    |               |                  |


### RUSH protocol

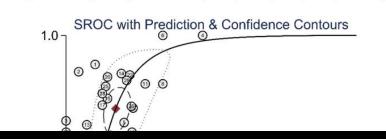



- B) Subxiphoid View
- C) Apical View



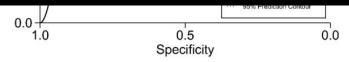
- B) Parasternal Aorta
- C) Epigastric Aorta
- D) Supraumbilical Aorta
- E) Femoral DVT
- F) Popliteal DVT






#### Volume status

Article


Diagnostic Accuracy of Ultrasonographic Respiratory Variation in the Inferior Vena Cava, Subclavian Vein, Internal Jugular Vein, and Femoral Vein Diameter to Predict Fluid Responsiveness: A Systematic Review and Meta-Analysis

|                      |      |             | _  | _  | _  |    |      |      |       |    |                           |
|----------------------|------|-------------|----|----|----|----|------|------|-------|----|---------------------------|
| Author               | Year | Target Vein | TP | FP | FN | TN | Sen  | Spe  | AUROC | n  | Threshold<br>(Index Test) |
| Barbier [21]         | 2004 | IVC         | 9  | 1  | 1  | 9  | 0.90 | 0.90 | 0.910 | 20 | ΔIVC = 18%                |
| Feissel [22]         | 2004 | IVC         | 14 | 1  | 2  | 22 | 0.88 | 0.96 | NR    | 39 | $\Delta IVC = 12\%$       |
| Moretti [23]         | 2010 | IVC         | 12 | 0  | 5  | 12 | 0.71 | 1.00 | 0.902 | 29 | $\Delta IVC = 16\%$       |
| Machare-Delgado [24] | 2011 | IVC         | 8  | 8  | 0  | 9  | 1.00 | 0.53 | 0.816 | 25 | $\Delta IVC = 12\%$       |
| Muller [25]          | 2012 | IVC         | 14 | 4  | 6  | 16 | 0.70 | 0.80 | 0.770 | 40 | $\Delta IVC = 40\%$       |
| Lanspa [26]          | 2013 | IVC         | 5  | 3  | 0  | 6  | 1.00 | 0.67 | 0.840 | 14 | $\Delta IVC = 15\%$       |
| Charbonneau [27]     | 2014 | IVC         | 10 | 7  | 16 | 11 | 0.38 | 0.61 | 0.430 | 44 | $\Delta IVC = 21\%$       |
| de Valk [28]         | 2014 | IVC         | 10 | 11 | 2  | 22 | 0.83 | 0.67 | 0.741 | 45 | $\Delta IVC = 36.5\%$     |
| Guarracino [29]      | 2014 | IJV         | 24 | 1  | 6  | 19 | 0.80 | 0.95 | 0.915 | 50 | $\Delta IJV = 18\%$       |
| Airapetian [30]      | 2015 | IVC         | 9  | 1  | 20 | 29 | 0.31 | 0.97 | 0.620 | 59 | $\Delta IVC = 49\%$       |
| de Oliveira [31]     | 2016 | IVC         | 6  | 0  | 3  | 11 | 0.67 | 1.00 | 0.840 | 20 | $\Delta IVC = 16\%$       |
| Sobozk [32]          | 2016 | IVC         | 20 | 3  | 4  | 8  | 0.83 | 0.73 | 0.739 | 35 | $\Delta IVC = 18\%$       |

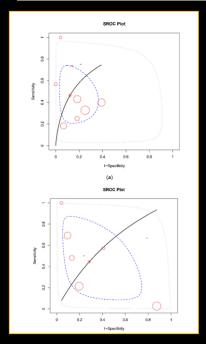


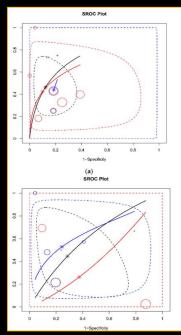
SR and MA suggest that the ultras. measurement of the respiratory variation in the <u>diameter of the IVC</u> has a diagnostic accuracy for predicting fluid responsiveness in critically ill patients.

| Yao [46]      | 2019 | IVC              | 17 | 3  | 20 | 27 | 0.46 | 0.90 | 0.702 | 67  | $\Delta IVC = 25.6\%$ |
|---------------|------|------------------|----|----|----|----|------|------|-------|-----|-----------------------|
| Zhang [47]    | 2019 | IVC              | 47 | 6  | 10 | 38 | 0.82 | 0.86 | 0.815 | 101 | $\Delta IVC = 14.5\%$ |
| Caplan [48]   | 2020 | IVC              | 31 | 9  | 10 | 31 | 0.76 | 0.77 | 0.820 | 81  | $\Delta IVC = 20\%$   |
| McGregor [49] | 2020 | IVC              | 9  | 4  | 10 | 7  | 0.47 | 0.64 | 0.464 | 30  | $\Delta IVC = 40\%$   |
| Blavius [50]  | 2021 | IVC—training set | 71 | 19 | 13 | 72 | 0.85 | 0.79 | 0.820 | 175 | $\Delta IVC = 25\%$   |
|               |      | IVC—test set     | 8  | 0  | 1  | 11 | 0.89 | 1.00 | 0.940 | 20  | $\Delta IVC = 25\%$   |



#### CT versus US in IVC




Article

Flat Inferior Vena Cava on Computed Tomography for Predicting Shock and Mortality in Trauma: A Meta-Analysis

Do Wan Kim 1,† D, Hee Seon Yoo 2,† and Wu Seong Kang 3,\* D





A flat IVC in trauma patients on CT, in terms of the development of shock, provides acceptable diagnostic accuracy with high specificity even with low sensitivity.

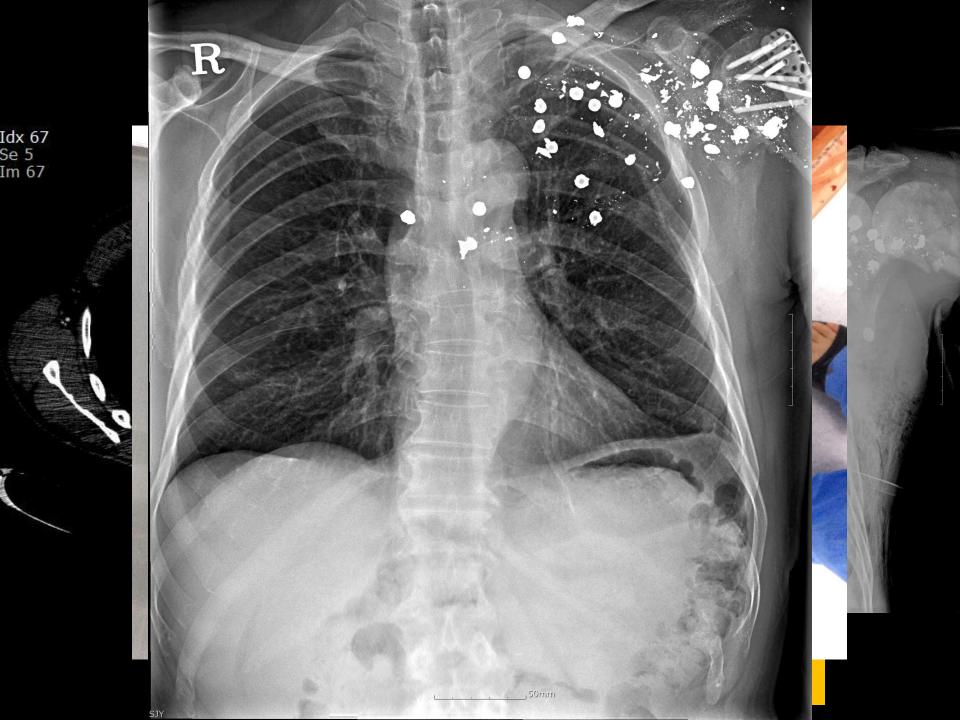
#### Assessment of stage

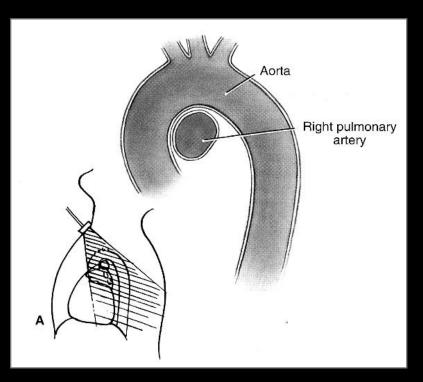
• First decision

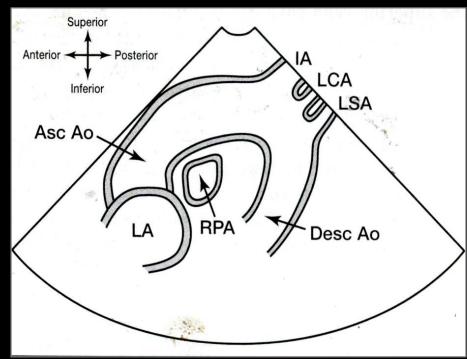
To be or not to be

Initial evaluation

Decision making


Real-time modification


Goal


Often, in complex problems,

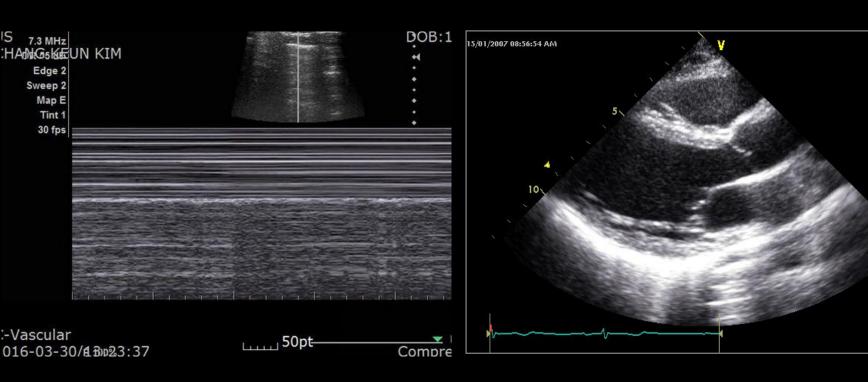
we can get answers simply

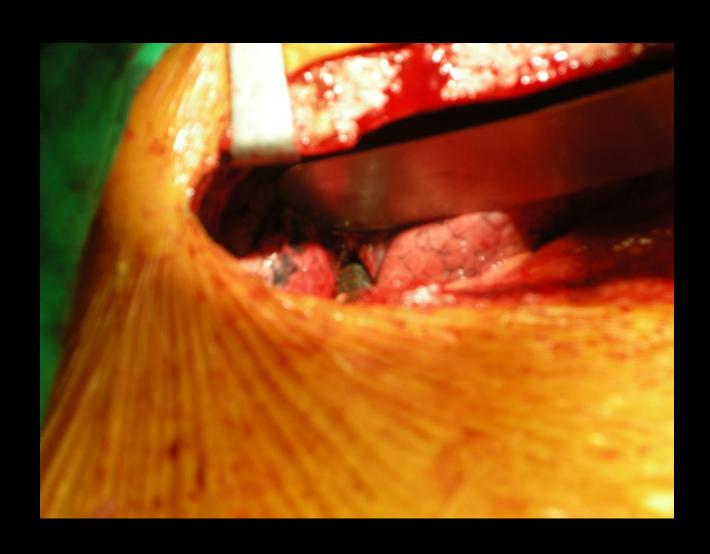
# CASE



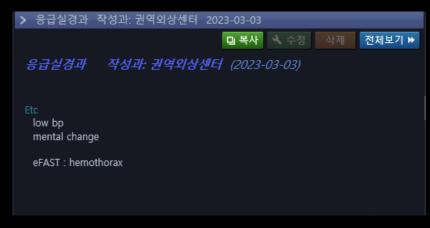


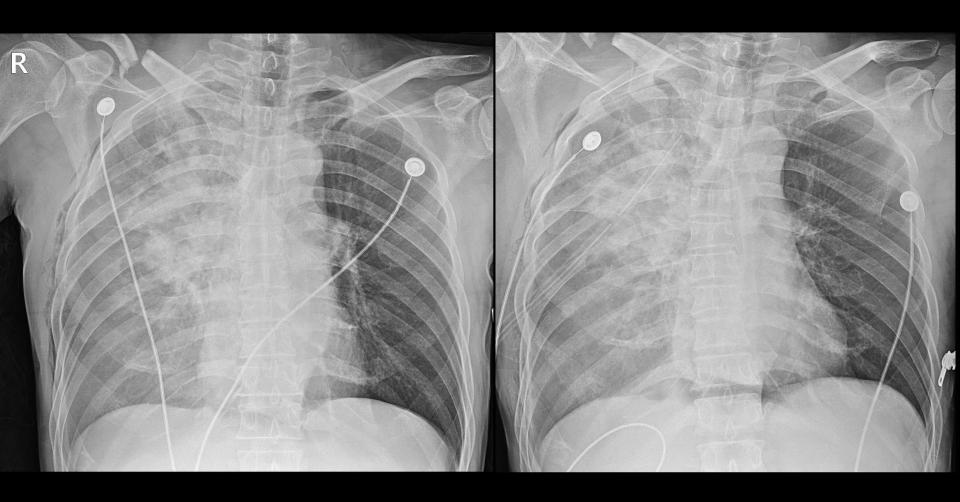


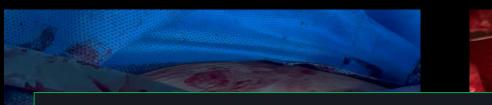






67/M - Transmediastianl penetrating injury


### Evaluation






- Motorcycle accident
- 70/30 mmHg, 94/ min
- eFAST right hemothorax
- Closed thoracostomy 2000cc drain









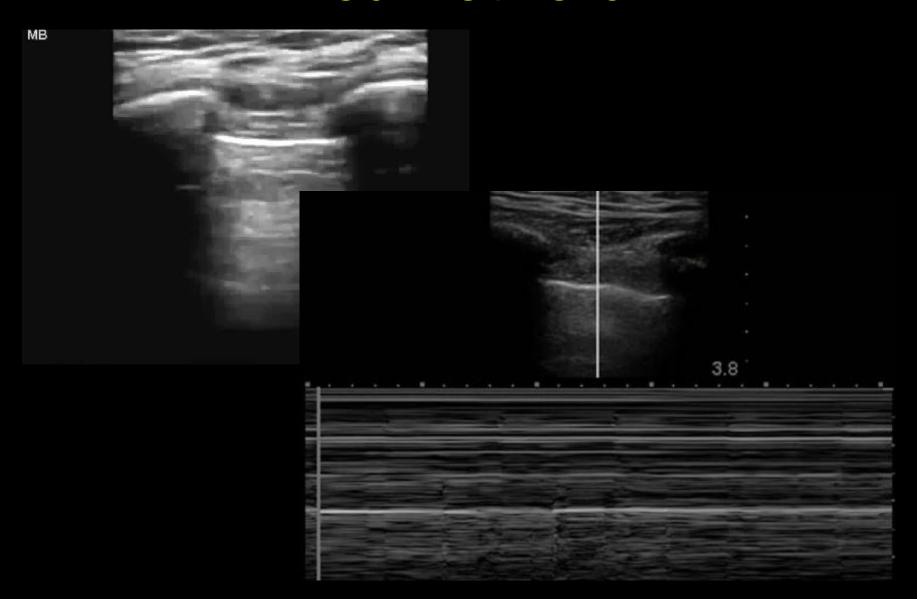
BP 측정되지 않으며 HR 늘어져 CPR 시행하며 left anterior thoracotomy 시행함. open cardiac massage 시행하며 패킹 및 bleeding focus evaluation 시도함. LA와 pulmonary vein의 junction에 2cm 가량의 hole 보이며 fresh red blood gush out 양상 확인됨.

손가락으로 막으며 cpr 지속 시도하였으나 defect 크기 커 지혈 되지 않으며 rythm 돌 아오지 않는 상태.

지혈 및 cardiac massage 위해 clamshell thoracotomy로 연장함.


손상 기전 및 범위로 인해 소생 가능성 없음 판단하여 보호자 설명 후 open cardiac massage 중단 2023.03.03 AM 1:43 Expire confirmed






- Dyspnea
- Cultivator handle
- Thyroid cartilage fracture
- Trachea 1<sup>st</sup> ring 4<sup>th</sup> ring fra





## Pneumothorax







Case report Open Access Published: 21 September 2022

# Successful treatment with femoro-femoral venovenous extracorporeal membrane oxygenation in traumatic tracheal injury: a case report

<u>Haein Ko</u>, <u>Sang Gi Oh</u>, <u>Sang Yun Song</u>, <u>Kyo Seon Lee</u> & <u>Do Wan Kim</u> <sup>™</sup>

Journal of Cardiothoracic Surgery 17, Article number: 238 (2022) Cite this article

7 Accesses Metrics



#### Limitation

- Only ultrasound ?
  - Combination with other diagnosis moda
- Combined with underlying disease
- Pericardium open: not a specialist?
- Relatively lower specificity
- Repeated scan



#### 경청해 주셔서 감사합니다.

